
Automatic differentiation for propagation of

orbit uncertainties on Orekit

Antolino Andrea, Luc Maisonobe

1 Automatic Differentiation

Automatic differentiation has been developed as a mathematical tool to avoid the

calculations of the derivatives of long equations. The interesting part is that the

resulting computation is accurate to the precision of the computer system and the

computation is equivalent of calculating f(x) without having to find the analytical

expression.

So where is the difference with the others systems of differentiation? The analyt-

ical, or symbolic, way takes an equation f(x), calculates the analytical form of the

derivative f(x) and applying it to a particular value finds the derivative with respect

of the symbol it has been chosen. The problem of this method is that for higher

orders, complicated equations or equations spread over a large number of functions

in some programming language, it is hard to implement. The advantages of this

method is that its very precise, rapid and efficient.

The numerical way just calculates in the surrounding of x a few values for f(x)

then evaluates the derivative with a precision related to the number of points taken

by the first part of the calculation. This procedure has been widely used when the

analytical way was too hard to implement, the useful part is that it is adaptable to a

lot of situations, it just needs an implementation of f(x), various points to evaluate

the derivative and few more things. The drawbacks are that the precision relies on

both the number of points and the step size in such a way finding the proper settings

is often a trial and error process, and the computation cost is directly proportional

to the step size. Another less obvious drawback is that if the implementation of f(x)

retains some intermediate results in a cache, typically to speed up long computation,

Antolino Andrea

C-S Systemes d’information, 5 rue Brindejong des Moulinais e-mail: andrea.antolino@c-s.fr

Maisonobe Luc

C-S Systemes d’information, 5 rue Brindejong des Moulinais e-mail: luc.maisonobe@c-s.fr

1



2 Antolino Andrea, Luc Maisonobe

this has a side effect on finite differences evaluation and may imply adapting the

caching feature.

An interesting part of the automatic differentiation is that once the low level

differentiation framework is available, its behavior and use is exactly the same as

a normal real number. Of course the calculations will be slower because instead of

calculating real numbers we are dealing with vectors of reals [2] but the resulting

accuracy will be exactly the same as the analytical model. So it could be harder

to write the differentiation framework but, once this operation has been done, the

utilization is immediate, and in every moment we will have access to the derivatives

needed.

2 Differentiation Framework

The framework we used for this purpose is provided by the Hipparchus library [4] .

This library is a free software mathematical library published under the Apache V2

license. It is the successor of the Apache Commons Math library.

This library has already implemented completely an Automatic Differentiation

framework thanks to its DerivativeStructure (DS) class. This class allow computa-

tion of derivatives with respect to any number of parameters, and to any derivation

order. The DS implements all the methods used by a double: the operations, the

exponentials, the trigonometrical functions, etc. In any algorithm using primitive

double numbers, these numbers can be replaced by DS instances without changing

the structure of the algorithm. One nice feature of Hipparchus differentiation frame-

work is that the DS-aware algorithm implementation does in fact not depend on the

number of parameters or derivation order. The code is written (or rather translated

from the primitive double implementation) once, and the number of parameters and

derivation orders will be selected at run time later on. The exact same algorithm can

be run using only one parameter and first order derivative with respect to this pa-

rameter, or using 6 parameters and all partial derivatives up to order 3. The settings

are selected at initialization of the first DS instances.

The initialization of the DS can be done in various ways, but the simplest and

most used one is based on the definition of the canonical variables, i.e. the ones

with respect to which all partial derivatives will be computed. As an example if we

need to compute the derivatives with respect to time t and position (x, y, z), first

of all this 4 parameters will be defined, telling to the DS their values, that there

are in total 4 independent parameters, and the order of derivation it is needed for

the program. Then these four canonical variables will be used to feed all the rest

of the algorithm and intermediate variables will be created and used and they will

propagate derivatives up to the final result. Thanks to this kind of initialization it

is possible to choose whatever parameter as a derivative parameter and it is easy to

change order of derivation, if needed, without a change in the complex core algo-

rithms. Different studies can be performed, and general propagation libraries can be

set up so users can tailor them to their own needs.



Automatic Differentiation on Orekit 3

Hipparchus also provides different integrators for solving Ordinary Differential

Equations. All of them are already able to integrate systems of differentials equa-

tions based on DSs. This Java library has already have been thoroughly tested. The

differentiation framework is based on the doubly recursive multivariate method[1]

for the computation of DS, with an additional compilation step that folds the com-

putation rules found through recursion into extremely fast single pass iterative rules

using indirection tables.

3 Orekit

Orekit [5] is an open source Java library of tools for the orbital mechanics initiated

by Communication and Systems and developed by a community including external

committers. Orekit is intended to be integrated into higher level projects, Fig. 1, but

it also proposes a set of concepts turnkey to respond to more advanced needs.

Fig. 1 Orekit implementation in a

flight dynamics application.

As a Java project it is based on classes and is

highly modularized(Fig.2). It is impractical to

apply an analytical way of derivation, because

every term inside would add a contribution in

the derivation and the derivatives terms would

have to be chosen before the utilization. As an

instance if the final user wants to see the influ-

ence of a moons position error on the evolu-

tion of the spacecraft, it would need to add as

a derivative term the position of the moon. It

could be possible to derivate all the equations

with respect of the moons position, but its defi-

nitely impossible to take in account all the pos-

sible needs of the users and derivate the equa-

tions with the respect any variable in the environment.

Fig. 2 Orekit main classes and structure.

Choosing a numerical dif-

ferentiation could be more

flexible from the users point of

view, but the the computation

time would increase tremen-

dously, especially if a lot of

derivation parameters are de-

sired. Furthermore if an high

precision is required it is nec-

essary to have smaller steps

which are hard to choose be-

cause it could be a factor

1E7 1E9 between the differ-

ent values. Talking about val-



4 Antolino Andrea, Luc Maisonobe

ues, the limit of the validity do-

main also adds problems, be-

cause the numerical calcula-

tions of the derivatives around

the boundaries would be one-

sided which would strongly decrease the precision.

The main advantages of the automatic differentiation is in the between of the

two precedent ways. It has the precision of an analytical method, being of course

slower in the computations, and the adaptability of the numerical, without problems

on the boundaries, and the different scale of its values are irrelevant. Thanks to this

approach it is possible to choose any value as a derivative term and to derivate to

whatever order is needed, keeping in mind that the growth in computational time is

a binomial coefficient taking in account the number of parameters and the order of

derivation [2].

The translation from the primitive double number-based Orekit to the DS-based

Orekit has covered all the different types of orbits representation, some of the at-

titudes, some of the force models, all the analytical propagators and the numerical

propagator.

The force models for the numerical propagator already translated include the

main body gravity field, with all the tesseral and zonal terms, the isotropic drag, the

third body attraction and the solar radiation pressure. If needed also all the other

force models on Orekit may be translated, but in order to ease the validation of the

global project it has been chosen to translate only in case of need. The remaining

force models will be translated in the future (solid tides, ocean tides, relativity, non-

isotropic non-conservative forces, ).

The correctness of this work has been proven comparing the propagation of a

sphere around the initial point [x0+dx; y0+dy; z0+dz] in the real number based

Orekit to the Taylors expansion of (dx,dy,dz) at the order N around the propagated

point (xt,yt,zt)DS = fDS(x0,y0,z0) of the DS based Orekit. As expected at the order

1 the DS approximation adds an important error, because its equivalent to the prop-

agation of the state error covariance matrix using the state transition matrix [3],

which is linear (fig.1). But increasing the order of the Taylor approximation, the

curve takes the form of the orbit and the error between the DS propagation and the

real one tends to zero.

One of the feature of the DS is that it is possible to choose any free parameter,

and study their effect on the totality of what Orekit offers. So the results may be

offered in any reference frame (terrestrial, inertial, etc.), or even in representation of

these frames, as orbital elements, Cartesian coordinates or geodetic points.



Automatic Differentiation on Orekit 5

4 Test

Fig. 3 Sketch to illustrate a Montecarlo

simulation .

Orekit is been operational since 2002 and it’s

been already deeply tested and proved. To test

the improvement and the correctness of the ad-

ditional features we gave to Orekit. First of all

we did the same tests, adapted to the new envi-

ronment, just using a DS with 0 derivatives and

0 parameters (it means it’s just a real number).

It has been done to prove the correctness of the

algorithms, and also compare the efficacity of

the DS treated as a Real number, which resulted

being 4 times slower, due to the optimization

added.

Secondly we did tests for the propagation of

the uncertainty comparing the results from the

original Orekit with the DS-based one. First we compared the error evolution calcu-

lated using the state transition matrix with the equivalent in the DS system, which

is achieved doing the Taylor’s expansion at the first order for the DS. After that,

to compare higher order approximation, we compared the evolution of a ”cloud of

points” around the initial point with the same ”cloud” evolved from the DS-initial

point.

Fig. 4 Sketch to illustrate a DS Monte-

carlo simulation .

Starting from a point X we evolved X and

then applied the transformation for dx com-

pared this result with the original Orekit propa-

gating X+dx from the starting point. It resulted

that starting from a 4-th order we can accom-

plish for an error in the order of the km a rela-

tive error of 10e-8. The relative error has been

calculated normalizing with the initial error.

5 Applications

Once the DS had been implemented and tested

in Orekit, it had its firsts applications. It has

been used in an internal project of C-S to val-

idate the orbit restitution of Orekit. The goal

of this application was to see how the error on

some of the orbital elements would evolve in 48h. The derivative parameters were

the semi-axis (a), the inclination (i) and the longitude of ascending node (Ω ) and

they were used to evaluate the long track and cross track standard deviation of the

position after 48h (Fig. 5) has been calculated using an error of (da, di, dΩ ) on the

initial orbital elements. In order to do so a Montecarlo Simulation, as Armellin et



6 Antolino Andrea, Luc Maisonobe

Fig. 5 Evolution of an initial error on orbital elements displayed on the long track and cross track

standard deviation.

al. [1], applied on the final propagated vector has been used. Thanks to the Taylors

expansion of the DS it has been possible to use a pool of 100k samples of da, di, d

around the initial value with a fixed standard deviation for each of the independent

parameters.

6 Performances

To show the performances of the DS propagation we chose to compare it with the

propagation time of a Real Based propagation to show how the DS propagation

slows the procedure. The table 1 is showing that in case of a MC simulation its

worth using the DS propagation if the number of samples needed for the Montecarlo

simulation, is above the number wrote in the table. Meaning that if it’s needed a

number of samples above 4 thousands, its worth using 6 parameters at the 6th order,

because doing 4thousand times the real-based Orekit is going to take more time than

the DS 6-6 Orekit with at the end the Taylors sampling.



Automatic Differentiation on Orekit 7

Table 1 Performances of the DS with respect to the time of a single propagation on the real-based

Orekit. τ = 0.043s

par/ord 1 2 3 4 5 6

1 9.53 10.46 10.69 11.86 12.30 12.79

2 9.76 10.93 11.16 16.51 20.46 22.09

3 10.46 14.65 25.81 55.81 160.5 296.7

4 10.69 25.81 44.18 103.2 298.8 648.3

5 12.32 49.53 87.21 205.5 786.2 2474

6 12.79 68.13 116.2 435.5 1335 3737

References

1. Armellin, R. , Di Lizia, P. , Bernelli-Zazzera, F., Berz, M. Asteroid close encounters charac-

terization using differential algebra: the case of Apophis, Springer Science+Business Media

(2010)

2. Kalman, D. Doubly Recursive Multivariate Automatic Differentiation. American University

Washington, D.C. (2002)

3. Tapley, B. D., Schutz, B.E., Born, G.H. Statistical Orbit Determination, pg. 405 (2004)

4. Hipparchus https://hipparchus.org/

5. Orekit https://www.orekit.org/


