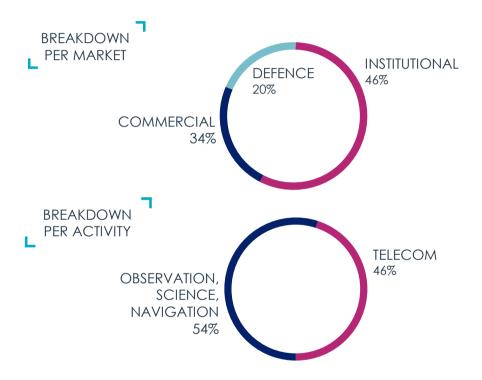


PROPRIETARY INFORMATION



2017 Thales Alenia Space



Thales Alenia Space

A global offer from equipment to end-to-end space systems:

EQUIPMENT PAYLOADS SATELLITES SERVICES SYSTEMS

27/11/2017 PROPRIETARY INFORMATION

Ref. 0005-0009140310

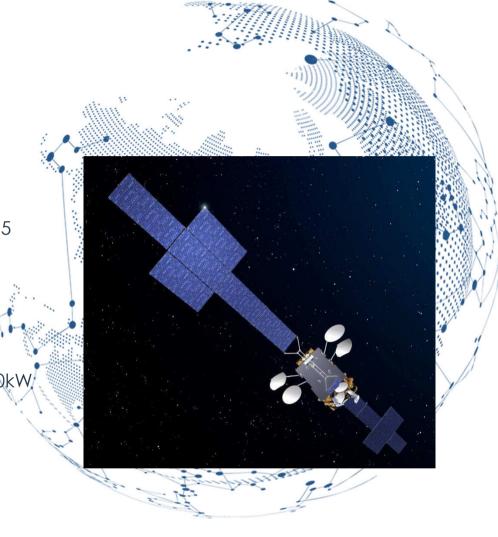
2017 Thales Alenia Space

NEOSAT

SpaceBus Neo

NEOSAT is part of ESA's Advanced Research in Telecommunications Systems program

A contract with Thales Alenia Space was awarded on 15 September 2015 → **SpaceBus Neo** product line


Full electric telecommunications platform:

Electric Orbit Raising

Electric Station-Keeping

Payload capacity: up to 2000 kg, and in the range of 20kW

Mass at launch: from 3 to 6 tons

Orekit in TAS

In the frame of the NEOSAT program, TAS is developing a new FDS. (Flight Dynamics Software) in collaboration with CS-SI and CS-Romania

For this FDS, the library Orekit has been retained as the solution for the low-level orbital dynamics components:

- Open source space dynamics library in Java
- Simple and efficient implementation of all required orbital dynamics elements and functions
- *Well validated in several operational applications

Thales Alenia Space is a member of the Orekit PMC (Project Management Committee), contributing to the evolution of the library

Flight Dynamics Software (FDS)

What is a Flight Dynamics Software?

- A ground segment operational software used to control a satellite in ground
 - Determine the orbit (GNSS and/or ground stations measurements)
 - Predict the orbit & orbital events (orbit propagation & detectors)
 - > Plan the orbital maneuvers & monitor the propulsion system

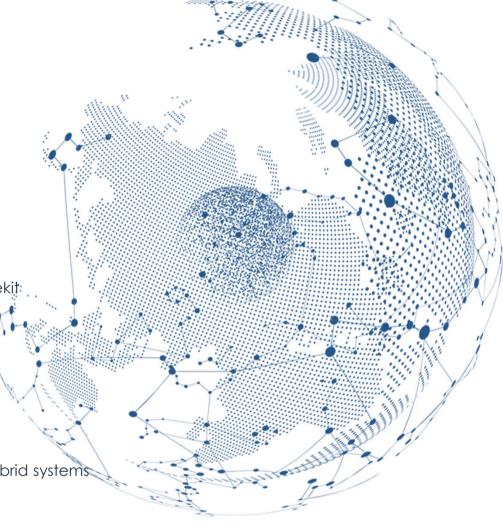
When is it used?

- During all the phases of a satellite lifetime
 - Launch & Early Orbit Phase (beginning of life)
 - Station Keeping (operational phase)
 - Disposal(end of life)

Who uses it?

- Operators
 - Severyday survey and control of the satellite
 - Occasional help from experts in case of issue or emergency

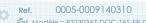
NEOSAT FDS

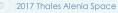

Flight Dynamics Software for SpaceBus Neo

A FDS tailored for SpaceBus Neo

- Geostationary orbits
- Station Keeping and disposal only (no LEOP)
- ** Electric propulsion management (Hall effect thrusters)
- Based on the latest version of Orekit
 - Most of the space dynamics functions based on Orekit
 - Susses almost all the functionalities of the library

But not only...


- CS-Ro and CS-SI will own the source code
- Plans are made to enhance the software for:
 - Other orbits: Low Earth Orbits
 - Other propulsion systems: Chemical propulsion or hybrid systems



PROPRIETARY INFORMATION

NEOSAT FDS - Organisation

ESA

- Head of NEOSAT Program
- * Final Customer

Thales Alenia Space (TAS)

- Designer & Integrator of SpaceBus Neo
- **Customer of NEOSAT FDS**

CS-Romania (CS-Ro)

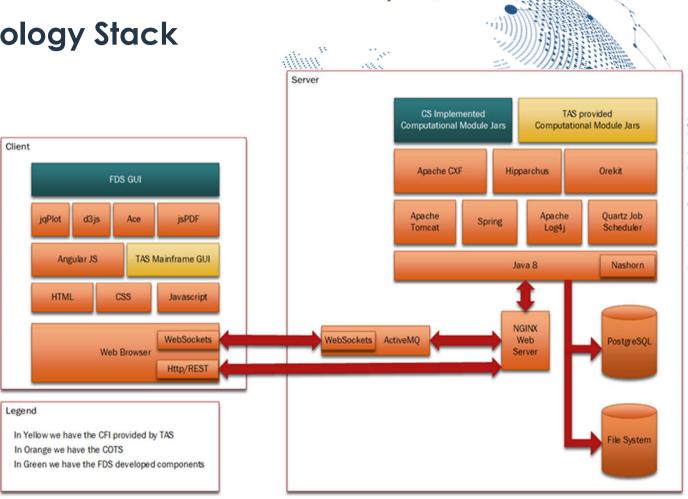
- Prime contractor of TAS
- * FDS Management, Design, Development & Validation

CS-SI

- Contractor of CS-Ro
- Provides expertise in flight dynamics

NEOSAT FDS – Technology Stack

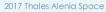
Client side: Web-like GUI

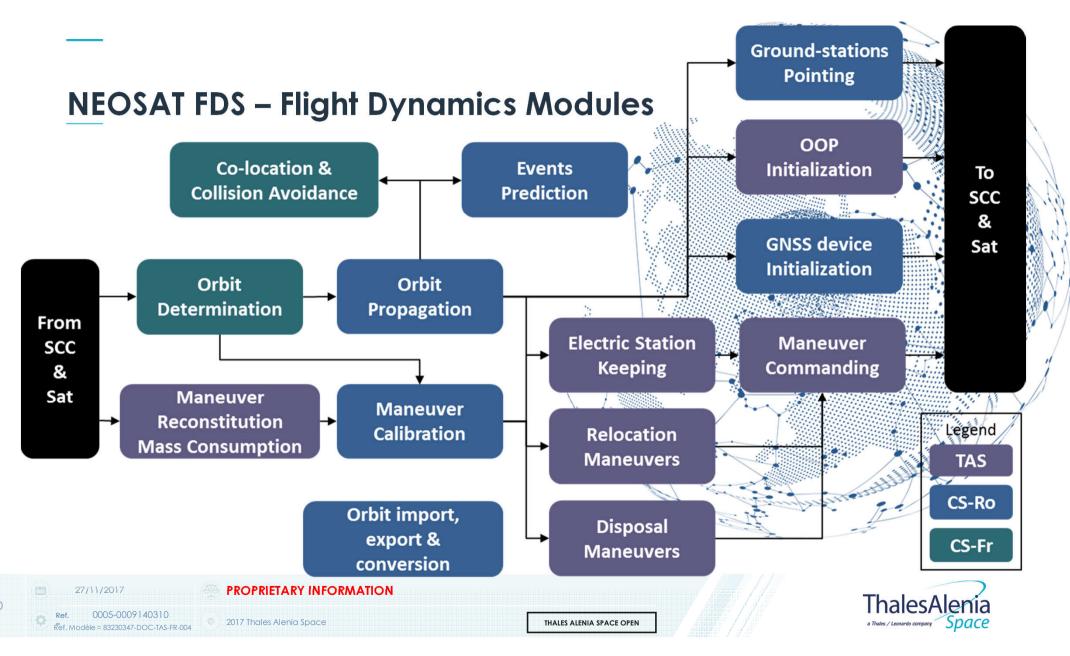

- Angular JS
- Organized in tabs
- TAS mainframe for menus

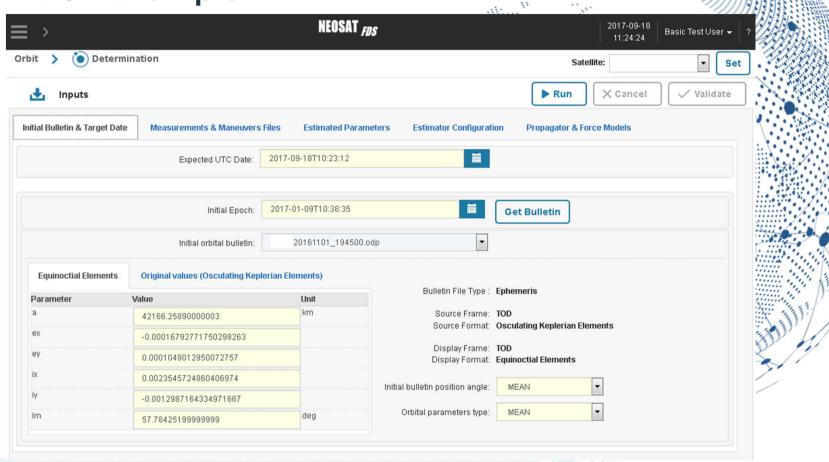
Client/server communication

- No installation
- **S** User login from navigator
- No direct access to file system
- Different type of users:
 - Operator, expert, admin

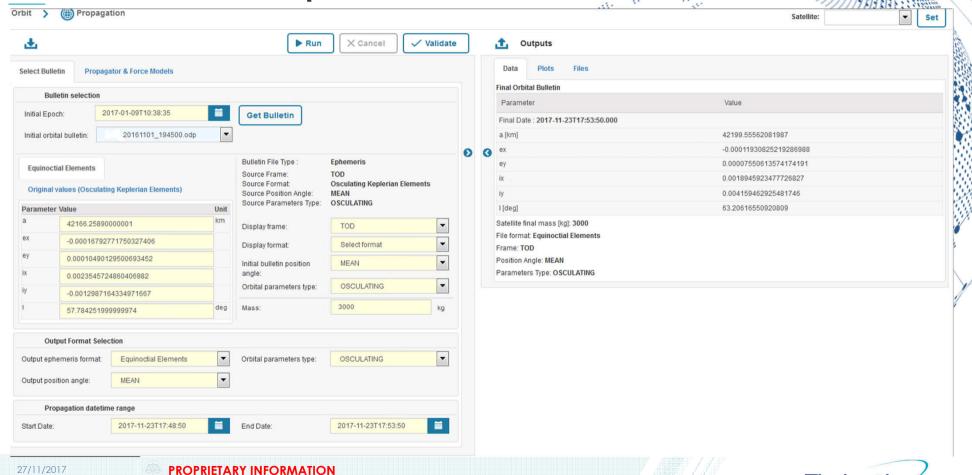
Server side: Java app


- ** Flight dynamics based on Orekit & Hipparchus
- Stored in obfuscated jar binaries





NEOSAT FDS – Example



NEOSAT FDS - Example

2017 Thales Alenia Space

THALES ALENIA SPACE OPEN

0005-0009140310

Ref. Modèle = 83230347-DOC-TAS-FR-004

General Functionalities

Orbits

* Type: Equinoctial, Cartesian, Keplerian, Flight parameters

Frames: IERS 2010 Conventions

Inertial: EME2000, TOD, Veis...

SECEF: ITRF2008, WGS84

Topocentric Frames for ground stations

Orbit Conversion

- Read/Write NORAD Two-Line Elements (TLE)
- Read Jspoc Conjunction Data Messages (CDM)

CCSDS Formats (XML)

- * TDM Tracking Data Message: Ground stations' measurements
- **SODM** Orbit Data Message
 - SOEM Orbit Ephemeris Message: Orbit propagation module output
 - SOPM Orbit Parameters Message: Orbit determination output

Orbit Determination

Two methods

- **™** Batch least-square
 - Since Orekit 8.0
 - >> Hipparchus Levenberg-Marquardt optimizer
- « Real-time » orbit determination
 - Extended Kalman Filter Runs permanently in an idle process on server

Ground stations measurements

- Distance
 - **Range**
 - Turn-around range
- Angular
 - Azimuth/Elevation
 - Right-ascension/Declination
- Robust linear regression for pre-processing

Orbit Determination

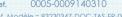
GNSS measurements

- Raw data from the on-board GNSS device
- ** Pre-processed and added as PV measurements

Atmospheric corrections

- lonospheric delay Klobuchar model
- ** Tropospheric delay Saastamoinen model

Estimations


- Orbital parameters & Covariances
- Force models
 - Solar Radiation Pressure
 - Maneuvers' thrusts
- Stations data
 - Measurements biases
 - **№**Position biases

PROPRIETARY INFORMATION

Orbit Propagation

Mean elements propagation with DSST

- SDSST Draper Semi-Analytical Satellite Theory
- Since Orekit 7.0

Force Models

- Spherical harmonics Earth geopotential
- Luni-Solar gravity perturbations
- Solar radiation pressure
- Planned maneuvers

Events Prediction & Ground Antenna Pointing

Orekit Satellite Events

- Apogee & perigee crossings
- Nodes crossings
- **Solution** User defined Local Solar Time crossings
- Leclipses of the Sun & obscuration ratio
 - **S**Earth
 - **Moon**
- Transits of Sun & Earth in satellites' sensors

Stations' Visibility

- Minimum elevation
- Azimuth/elevation masks
- Atmospheric refraction

Co-location & Collision Avoidance

Multi-satellite Propagation

- Since Orekit 9.0
- With constant thrusts or impulse maneuvers

Close approach detection

Minimum distance with Orekit events

Avoidance maneuvers

** Using Orekit small maneuver analytical model

Co-location strategies

- Longitude separation
- Eccentricity & inclination separation

NEOSAT FDS for Orekit

Adds-on for Orekit

Orekit new features based on NEOSAT FDS needs

Developed in Orekit then added to NEOSAT FDS software

Extended Kalman filter for orbit determination

- On-going work by the Orekit team
- To be released in 2018

Ground stations measurements

- Turn-around range measurements
- Loader & Reader for ionospheric data Klobuchar-Style Ionospheric Coefficients from Astronomical Institute
 - Data fit with their own ionospheric models (IONEX)
 - **Better performance than the data originally broadcasted by GPS
 - RINEX navigation data files format
 - Simple Final, rapid (last 5 days) and predicted data for real-time orbit determination

Conclusion

Orekit used in an operational software

- Station keeping for geostationary satellites
- Electric propulsion

NEOSAT FDS use of Orekit

- Latest version
- Almost the full range of Orekit capabilities

Some of the features needed for NEOSAT FDS are or will be added to Orekit

Thank you for your attention!

