

Orekit at the U.S. Naval Research Laboratory

Introduction

Geolocation with Orekit

Orekit & an NRL Satellite

Orbit Determination Research with Orekit

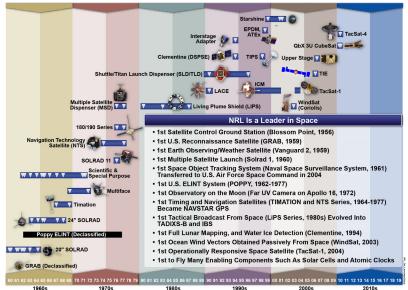
Comparison with Heritage
Radius of Convergence
Directional Measurement Representation

Conclusions & Future Work

Questions?

Introduction

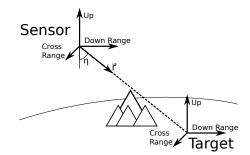
Introduction — NRL



"The Government should maintain a great research laboratory to develop guns, new explosives, and all the technique of military and naval progression without any vast expense."

— Thomas Edison, 1915

Introduction — Naval Center for Space Technology


Geolocation with Orekit

Geolocation — Orekit's first use at NRL

Sensitivity analysis of geolocation systems

- Started in 2011
- Goal to evaluate non-linear effects of terrain
- Sensitivity analysis for non-linear error budget
- Similar to Rugged¹
- Results published in 2015²

¹https://orekit.org/rugged/

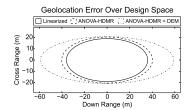
²Evan Ward. "Global sensitivity analysis of terrain effects in geolocation systems". In: *IEEE Transactions on Aerospace and Electronic Systems* 51.3 (2015), pp. 2039–2046

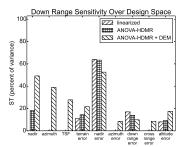
Geolocation — Why Orekit?

Astrodynamics library search

- Requirements
 - Precise and accurate
 - Easy to work with
 - Extensible
 - Thread safe
 - Actively maintained
- Examined
 - Internal heritage code
 - AGI's STK
 - Some NASA open source code
 - Orekit

Orekit met all requirements


- Thread safety was new to Orekit
- Contributed patches to improve concurrent performance



Geolocation — Results

Simulation

- Airplane with angles-only geolocation sensor
- Computes intersection with a Digital Elevation Model (DEM)
- Sensitivity analysis using Analysis of Variance — High Dimensional Model Representation (ANOVA-HDMR)
 - A Monte-Carlo method

Orekit & an NRL Satellite

Application of Orekit to an On-Orbit Mission

An on orbit satellite

- A Test And Check Out (TACO) satellite
- Used for end to end testing of NRL's Blossom Point Tracking Facility
- Attitude sensors degraded in 2013
- Needed new algorithm for attitude estimation and maneuver planning

Requirements

- Low cost
- Low level of effort
- Minimal verification requirements
- Accept ill-conditioned data
- Moderate accuracy requirements

Attitude Determination and Control

Orekit and Apache Commons Math based solution

- Orekit provided
 - Frames
 - Time
 - TLES
 - Attitude propagation
 - Planetary ephemerides
- Apache Commons Math provided
 - Vector geometry
 - Levenberg-Marquardt Optimizer

Concept to spacecraft maneuver in a few weeks

- Successfully corrected attitude on first try
- Approaching 4 years of use
- Still in use today

Orekit enabled meeting the requirements

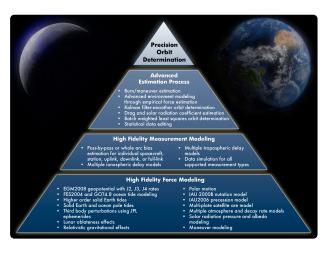
Orbit Determination Research with Orekit

Orbit Determination Research

State Estimation Application (SEA)

- Orbit Determination (OD) application using Orekit
- Written in 2014
- Inspired by Luc Maisonobe's addition of tide models
- Used to evaluate new OD concepts
- Can be quickly modified
 - Java
 - Extensive OSS libraries
 - Automatic differentiation

Used in 3 publications


- Validation against NRL's Orbit Covariance Estimation & Analysis (OCEAN) application
- Radius of convergence
- Directional measurement representation

Comparison with Heritage

NRL OCEAN

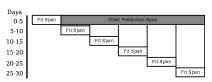
- High precision
 OD
- Fortran-based
- Extensive heritage
- Basis of comparison for SEA

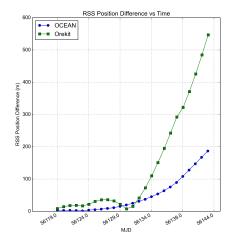
Comparing SEA and OCEAN

Evaluate predictive ability³

- Satellite Laser Ranging (SLR) test case
- Using STELLA satellite
 - SLR target in Low Earth Orbit (LEO)
- Use similar configuration for OCEAN and SEA
 - Drag models were biggest difference
 - No drag model supported by both

³Evan M. Ward, John G. Warner, and Luc Maisonobe. "Do Open Source Tools Rival Heritage Systems?: A comparison of tide models in OCEAN and Orekit". In: *AIAA/AAS Astrodynamics Specialist Conference*. 2014


⁴STELLA Satellite. Image Credit: CNES



Comparison and Results

Process

- · Fit to five days of data
- Predict for 25 days
- Compare predict to successive five day fits

SEA has sufficient accuracy for use in further research

Radius of Convergence

Radius of Convergence

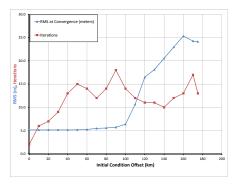
Examine sensitivity to errors in initial conditions⁵

- Using SLR satellite LAGEOS-1
 - SLR provides high precision measurements
- Initial condition moved progressively further from truth
- Used SEA and Hipparchus optimizers

At what point is the OD algorithm unable to find a solution?

Evaluate several algorithms

Iteration Method	Matrix Decomposition	Explicit Normal Equations
Levenberg- Marquardt	QR	No
Gauss-Newton	Cholesky	Yes
Gauss-Newton	LU	Yes
Gauss-Newton	QR	No
Gauss-Newton	SVD	No


⁵John G. Warner et al. "Comparing Radius of Convergence in Solving the Nonlinear Least Squares Problem for Precision Orbit Determination of Geodetic Satellites". In: *AIAA/AAS Astrodynamics Specialist Conference*. 2016, p. 5339

Radius of Convergence Results

Levenberg-Marquardt

Method	Radius of Convergence Distance (km)
Levenberg-Marquardt Gauss-Newton Cholesky Gauss-Newton LU Gauss-Newton QR Gauss-Newton SVD	175.1 9.353 9.353 9.353 9.353

Levenberg-Marquardt uses trust region for larger radius of convergence

Directional Measurement Representation

Angles only orbit determination⁶

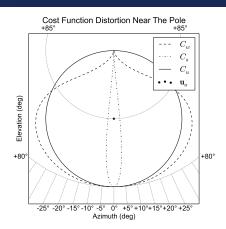
- Ground station measures direction to satellite
- Does the coordinate system matter?
- Using Weighted Least Squared
 - Assumes residuals are Normally distributed
- OD textbooks recommend spherical coordinates
- OCEAN weights azimuth by cosine of elevation

⁶Evan M. Ward and Greg Carbott. "On Directional Measurement Representation in Orbit Determination". In: *AIAA/AAS Astrodynamics Specialist Conference*.

2016. DOI: 10.2514/6.2016-5369

Three Angular Representations — Cost Functions

Spherical Coordinates


$$C_s = (\alpha_c - \alpha_o)^2 + (\varepsilon_c - \varepsilon_o)^2$$

Weighted Spherical Coordinates

$$C_w = ((\alpha_c - \alpha_o)\cos \varepsilon_o)^2 + (\varepsilon_c - \varepsilon_o)^2$$

Unit Vector

$$\sin \theta = |\mathbf{u}_c \times \mathbf{u}_o|$$
$$C_u = \theta^2$$

Representation determines shape of probability distribution

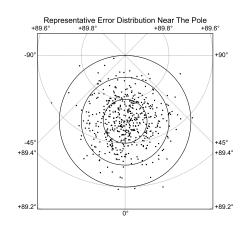
Comparison

Analytic

- C_w , C_u equivalent for small $\Delta \alpha$, $\Delta \varepsilon$
 - Distortion increases with $\Delta \alpha, \Delta \varepsilon$
- C_w , C_s equivalent for small ε_o
 - Distortion increases with ε_o
- All three equivalent with all above assumptions

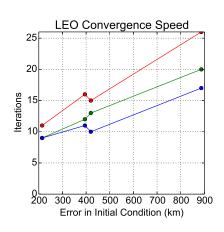
Hypotheses

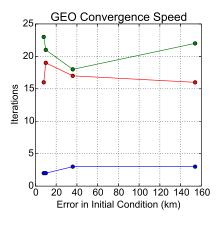
- Unit vector quicker to converge
 - Measured using number of iterations
- Unit vector attains more accurate solution
 - Measured using RSS ephemeris difference


Observation Simulation

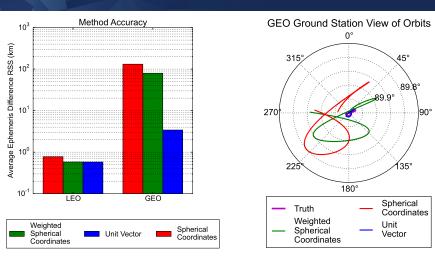
Noise

- Symmetric about true direction
- Independent of true direction
- Normal with $\sigma = 0.1^{\circ}$


Satellites


- 500km circular LEO
- GEO
 - Ground station near sub-satellite point
- Several initial conditions
 - Control size of residuals

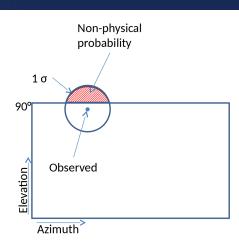
Results — Speed



Spherical Coordinates Weighted Spherical Coordinates Unit Vector

Results — Accuracy

Unit vector method best for high elevation angles


Distortion

- Small θ does not imply small $(\alpha_c \alpha_o)$
- Shortest path is not a straight line

Clipping

 Positive probability placed on non-physical solutions

Both effects prevent averaging

Unit vector method has neither effect

Conclusions & Future Work

Final Thoughts on Orekit

Great tool for research

- Highly reconfigurable
- · Quick development
- · High fidelity

Welcoming Community

- · Responds quickly
- Patient with new users

Opportunity to improve documentation

- Documentation is good for experts in astrodynamics and computer science
- Received feedback from several new users
 - Documentation is unclear / confusing
 - Can't find the answer
- Perhaps more high level overviews and tutorials

Orekit Future Work

Interoperability with other analysis tools

- Parser & Writer for STK .e and Cesium CZML files
- Add covariance to EphemerisFile interface
- Better frame to name mapping
- One Line Element Sets (OLES)

Internal Interoperability

- Instantiatable FramesFactory, TimeScaleFactory
 - Compare EOP series
- Frame from/to
 PVCoordinatesProvider,
 AttitudeProvider
- Analytic Propagator from a PVCoordinatesProvider
 - Event detection for planets, etc.

Questions?