
Indirect approach for optimal control in Orekit

Romain Serra

October 2024

1 Introduction

This document explains the foundations of Orekit (version 12.2) implementation of in-
direct optimal control for space trajectories. The library provides the user with a model
for the so-called adjoint variables as defined in Pontryagin’s Maximum Principle (PMP),
along with a solver for these optimality conditions for fixed-time, orbit-to-orbit prob-
lems, in the form of a single shooting algorithm. To know more about optimal control
theory and their application in astrodynamics, the reader is encouraged to check out the
literature, for example [3, 2, 1].

2 Adjoint equation

The state vector x is made of the position vector r, the velocity v and the mass m. Let
T be the thrust force. Let us assume that the exhaust speed is constant, so that the
mass equation is:

ṁ(t) = −α|T|2, (1)

where α ≥ 0. Given a set of external accelerations a1, . . . ,an, according to Newton’s
second law, the equations of motion read:

ṙ(t) = v(t)

v̇(t) = T(t)
m(t) +

∑
i ai(t, r(t),v(t)) (2)

Let us adopt a Lagrange form of the cost function J :

J =

∫ t

t0
L(t,x,T)dτ (3)

Boundary conditions (at t0 and tf) aside, the minimization of J under the differential
equations (1-2) defines an optimal control problem. Following the PMP’s framework
and discarding the so-called abnormal case (see [3] for definition), the Hamiltonian H is:

H = −L+ < pr,v > + < pv,
T

m
+

∑
i

ai > −α|T|2pm, (4)

1

where pr = (pr,pv, pm) is the adjoint vector. The optimal solution x∗, p∗ maximizes
this quantity as H∗ and p∗ satisfies dp

dt = −∂H∗

∂x .
Assuming that L = L(t,m, |T|2), then it comes that the thrust must be aligned with

the adjoint velocity i.e. |pv|2T = |T|2pv. One can then rewrite the Hamiltonian as:

H = −L(t,m, |T|2)+ < pr,v > +|pv|2
|T|2
m

+ < pv,
∑
i

ai > −α|T|2pm (5)

Because the cost function does not depend directly on the position and velocity
vectors, the differential equations for them are already known and are actually linear:

ṗr = − < pv,
∑
i

∂ai

∂r
>

ṗv = −ṗr− < pv,
∑
i

∂ai

∂v
> (6)

In Orekit, the overall logic of Eq. (6) is encoded in (Field)CartesianAdjoint-
DerivativesProvider. The individual contributions to it (and to the Hamiltonian) from
the different accelerations ai are in the implementation of the interface (Field)-
CartesianAdjointTerm. The native ones cover attraction from a point-mass body (central
or not, as a third body or not) and the J2 effect, as well as non-inertial forces (in a
rotating frame).

2.1 Energy cost

From now on, let us assume that L is proportional to the squared Euclidean norm of
thrust, with typically a scaling factor 1

2 , but the exact form can vary. It is sub-optimal
regarding fuel consumption but solutions are easier to find. Next, let us go over the three
versions implemented in Orekit, as inheritors of AbstractCartesianEnergy. Note that the
interface CartesianCost is generic and can be built upon to emulate any user-defined
function.

2.1.1 Negligible mass flow

If α = 0, the mass is constant and can be dropped from the state vector, as well as the
corresponding adjoint variable. It is then more convenient to choose the control vector
as the acceleration u = T

m rather than the force, so that L = 1
2 |u|. Plugging this into

Eq.(4), it becomes:

H = −1

2
|u|22+ < pv,u > + < pr,v > + < pv,

∑
i

ai > (7)

The maximization readily gives u = pv. Note that an advantage of this choice of control
vector is that this relationship does not depend on the mass at all. Another one is that
the no-control initial guess p = 0 can be used .

2

2.1.2 Unbounded thrust

Let us go back to α 6= 0 and the control vector being T, so that L = 1
2 |T|

2
2. The

Hamiltonian is a second order polynomial w.r.t. the thrust magnitude. Let us define
the switching function S = |pv |2

m − αpm, so that:

H = −1

2
(|T|2 − S)2 +

1

2
S2+ < pr,v > + < pv,

∑
i

ai > (8)

When S is negative, then maximizing H is equivalent to |T|2 = 0. Otherwise, |T|2 = S,
so all in. It is now possible to derive the adjoint mass rate. Both cases boil down to the
same equation:

ṗm = |T|2
|pv|2
m
− < pv,

∑
i

∂ai

∂m
> (9)

In Orekit, to maintain propagation accuracy, events detectors are included internally to
properly handle the singularities when the switches occur. This is why CartesianCost
extends EventDetectorsProvider.

2.1.3 Bounded thrust

Let us now consider that the thrust magnitude has an upper bound T̄ . In this case, let
us define the control vector as T/T̄ . The maximization of the Hamiltonian is identical
to the previous analysis, except when S > T̄ , in which case |T|2 = T̄ .

3 Shooting method

The PMP also gives so-called transversality equations, linked to the boundary conditions.
If the terminal Cartesian variables are fixed, then the corresponding adjoint variables
are free. If the terminal mass is free, then the adjoint mass must vanish. Thus for fixed
times (t0, tf), fixed initial state (x0,m0) and fixed terminal Cartesian vector xf , then the
only non-trivial transversality equation is pm(tf) = 0. The shooting approach consists in
iterating on the value of p(t0) from a guess via differential correction until the equations
are satisfied. The single version uses propagation from t0 to tf (as opposed to splitting
the interval for robustness). Orekit tackles this case with a simple Newton-Raphson
update, as implemented in NewtonFixedBoundaryCartesianSingleShooting. Note that
its ancestor class AbstractIndirectShooting is very generic and can be leveraged upon for
custom use. The reader can refer to the FixedBoundarySingleShooting file in the Orekit
tutorials repository for examples. In particular, it is shown how the solver can be used
in a sequence, adding up constraints, using the obtained adjoint vector as initialization
for the next one, starting with the cost from 2.1.1 and a no-control guess p = 0. Note
that the shooting method works with both Orbit-based (with CARTESIAN OrbitType)
and AbsolutePVCoordinates numerical propagation.

3

References

[1] M. Cerf. Optimization techniques ii: Discrete and functional optimization. In Opti-
mization Techniques II. EDP Sciences, 2023.

[2] G. Colasurdo and L. Casalino. Indirect methods for the optimization of spacecraft
trajectories. Modeling and Optimization in Space Engineering, pages 141–158, 2013.

[3] E. Trélat. Optimal control and applications to aerospace: some results and challenges.
Journal of Optimization Theory and Applications, 154:713–758, 2012.

4

