
Indirect approach for optimal control in Orekit

Romain Serra

February 2025

Change log

October 24 - 1st version (Orekit 12.2)

February 25 - 2nd version (Orekit 13.0)

1 Introduction

This document explains the foundations of Orekit (version 13.0) implementation of in-
direct optimal control for space trajectories. The library provides the user with a model
for the so-called adjoint variables as defined in Pontryagin’s Maximum Principle (PMP)
for a range of cost functions, along with a solver for these optimality conditions. The
latter is limited to fixed-time, orbit-to-orbit problems, in the form of a single shooting
algorithm, and users are encouraged to develop their own tools for other applications.
To know more about optimal control theory and their application in astrodynamics, the
reader is referred to the literature, for example [6, 4, 3]. In a nutshell, optimal control is
a branch of optimization set in infinite dimension (since the decision domain is a func-
tion space) and the indirect approach consists in deriving optimality conditions before
solving for them (as opposed to the direct one, based on discretizing beforehand). The
PMP provides first-order, necessary conditions of optimality for a class of problems.

The state vector x is made of the position r and velocity v vectors in some reference
frame along with the mass m. Let T be the thrust force. Let us assume that the exhaust
speed is constant, so that the mass equation is:

ṁ(t) = −α|T(t)|, (1)

where α ≥ 0 and |.| is the Euclidean norm. Given a set of external accelerations
a1, . . . ,an, according to Newton’s second law, the equations of motion read:

ṙ(t) = v(t)

v̇(t) = T(t)
m(t) +

∑
i ai(t,x(t)) (2)

Let us adopt a Lagrange form of the cost function J :

J =

∫ t

t0
L(τ,x(τ),T(τ))dτ (3)

1

The minimization of
∫
L under the differential equations (1-2) defines an optimal control

problem. The addition of initial (at t0) or final (at tf) conditions is possible and these
times can be fixed or not. Note that, except when stated otherwise, it shall be assumed
that the thrust magnitude is bounded by T̄ > 0.

2 Adjoint equations

Following the PMP’s framework and discarding the so-called abnormal case, the Hamil-
tonian H is:

H(t,x,p,T) = −L(t,x,T)+ < pr,v > + < pv,
T

m
+
∑
i

ai(t, r,v,m) > −α|T|pm, (4)

where p = (pr,pv, pm) is the adjoint vector, which can be seen as an extension to the
Lagrange multipliers prominent in finite-dimension optimization. Note that if α 6= 0,
H is not differentiable when T = 0. However it is still a locally Lipschitz function in
the control vector which is enough to apply the PMP. The latter states first of all that
dp
dt = −∂H

∂x . From now on, let us assume that L does not explicitly depend on the
state variables. One then has the following linear equations for the adjoint position and
velocity:

ṗr = − < pv,
∑
i

∂ai

∂r
>

ṗv = −ṗr− < pv,
∑
i

∂ai

∂v
> (5)

Furthermore, the PMP says that the optimal control maximizes the Hamiltonian at
all times. Assuming that L = L(t, |T|), then it comes that the thrust force must be
aligned with the adjoint velocity i.e. |pv|T = |T|pv. One can then rewrite Eq. (4) as:

H = −L+ < pr,v > +|pv|
|T|
m

+ < pv,
∑
i

ai > −α|T|pm (6)

Now the adjoint mass equation can also be written:

ṗm = |T| |pv|
m2
− < pv,

∑
i

∂ai

∂m
> (7)

In Orekit, Eq. (5) and (7) are encoded in (Field)CartesianAdjoint-
DerivativesProvider. The individual contributions to it (and to the Hamiltonian) from
the different accelerations ai are in the implementation of the interface (Field)-
CartesianAdjointTerm. The native ones cover attraction from a point-mass body (central
or not, as a third body or not) and the J2 effect, as well as non-inertial forces (in a
rotating frame).

2

Note that the PMP also states that Ḣ = ∂H
∂t , so when t0 or tf is not fixed, −H

can be seen as the adjoint of time. It also means that for an autonomous system (the
dynamics not depending explicitly on time), the Hamiltonian is constant over the optimal
trajectory.

At this point, the complete relationship between T and p is still undetermined
and depends on the actual definition of L. This logic is to be implemented via the
(Field)CartesianCost interface and the library comes with a few built-in cases, described
next. Note that if one wishes to compute J along, one can use getCostDerivativeProvider
to add to the propagator

∫
L as an additional integration variable.

2.1 Fuel cost

A favored choice in trajectory design is to minimize the mass depletion a.k.a. the fuel
expenditure. Let us choose the control vector as w = T/T̄ and the cost integrand as
L = L1 = T̄ |w|. In this case, one has:

H = T̄ |w|S+ < pr,v > + < pv,
∑
i

ai > (8)

where S = |pv |
m − αpm − 1. The maximization of the Hamiltonian tells us that |w| = T̄

when S > 0 and zero otherwise. The control is said to be bang-bang and S is referred
to as the switching function. Note that it is assumed here and will be also in the other
cases that the S does not vanish on an interval, which would be called a singular arc.

In Orekit, to preserve the accuracy of numerical integration, events detectors are to
be included in propagation to properly handle the singularities when the switches occur.
This is why CartesianCost has a getEventDetectors method.

2.2 Energy cost

The previous case is difficult to solve for in practice, hence a usual alternative is the
so-called cost energy, where L is proportional to the squared Euclidean norm of thrust
(typically with a scaling factor 1

2 although the exact form may vary). It is sub-optimal
regarding fuel consumption and the gap is somewhat captured by the following Cauchy-
Schwarz inequality: ∫ tf

t0
|T|dt ≤

√
(tf − t0)

∫ tf

t0
|T|2dt (9)

Let us now go over the different versions implemented in Orekit, as inheritors of (Field)-
AbstractCartesianEnergy.

2.2.1 Unbounded thrust

In this subsection, let us consider that the thrust is not bounded i.e. T̄ = +∞.

3

Zero mass flow If α ' 0, the mass is considered constant and can be dropped from
the state vector, as well as the corresponding adjoint variable. It is then more convenient
to choose the control vector as the acceleration u = T

m rather than the force, so that
L = L2 : u 7→ 1

2 |u|
2. Plugging this into Eq.(4), it becomes:

H = −1

2
|u|2+ < pv,u > + < pr,v > + < pv,

∑
i

ai > (10)

The maximization readily gives u = pv. Thus the control law is now smooth. Note that
an advantage of choosing u over T is that this relationship with the adjoint vector does
not depend on the mass at all. Another one is that the vanishing control p(t) = 0∀t can
be used as initial guess in shooting methods (see 3 for details on this technique).

Non-zero mass flow Let us go back to α 6= 0 and the control vector being T, so that
J = 1

2

∫
|T|2. The Hamiltonian is a polynomial of degree 2 w.r.t. the thrust magnitude.

Let us define S̃ = S + 1 = |pv |
m − αpm, so that:

H = −1

2

(
|T| − S̃

)2
+

1

2
S̃2+ < pr,v > + < pv,

∑
i

ai > (11)

When S̃ is negative, then maximizing H is equivalent to |T| = 0. Otherwise, |T| = S̃.
So the control law is continuous but when S̃ vanishes, its derivative is not.

2.2.2 Bounded thrust

Let us now consider that the thrust magnitude has an upper bound T̄ < +∞. In this
case, let us define the control vector as w = T/T̄ . The maximization of the Hamiltonian
is identical to the previous analysis, except when S̃ > T̄ , in which case |T| = T̄ .

2.3 Penalized fuel cost

An intermediate between the fuel cost and a smoother one can be sought. This can
be done by adding a penalty term εT̄G(|u|) to L, where ε is a weight in [0, 1]. In a
homotopic approach, one would start at 1 with the full penalty and move towards the
left, solving problems closer and closer to the one defined in 2.1 (see [1] for more details).
The Hamiltonian then reads:

H = T̄ |w|
(
−1− αpm +

|pv|
m

)
− εT̄G(|w|)+ < pr,v > + < pv,

∑
i

ai > (12)

In Orekit, (Field)PenalizedCartesianFuelCost offers the framework for any penalty. There
are two native implementations, as described next.

4

2.3.1 Quadratic penalty

With G = Gq : a 7→ 1
2 T̄ a

2 − a, one gets the same problem than 2.2.2 when ε = 1. For
ε > 0, the Hamiltonian is:

H = −ε
2

(
T̄ |w| − Sε

)2
+
ε

2
S2
ε+ < pr,v > + < pv,

∑
i

ai > (13)

where Sε = 1
ε

(
|pv |
m − αpm − 1

)
+1. The maximization of the Hamiltonian is very similar

to 2.2.2 and implies the following:

|w| =

0 if Sε < 0
Sε/T̄ if 0 ≤ Sε < T̄
1 if Sε ≥ T̄

(14)

2.3.2 Logarithmic barrier

Another choice for the penalty is G = Gl : a 7→ log(a) + log(1 − a). It is not defined
for ε = 0 or 1 and hence is referred to as a barrier function. The derivative of the
Hamiltonian w.r.t. the norm is:

dH

d|w|
= T̄ (S − εG′) (15)

Thus 1/|w| is solution of the following equation in the unknown x on [1,+∞):

x+
1

1− x−1
=
S

ε
(16)

so it is the largest root of a second-order polynomial:

x2 − 2

(
S

2ε
+ 1

)
x+

S

ε
(17)

After some algebraic manipulations it comes that:

|w| = 2ε

S + 2ε+
√
S2 + 4ε2

(18)

It is worth mentioning that the control law is smooth in this case. Beware that a
homotopic method cannot start at 1, but it can still use the quadratic penalty case for
instance to be initialized for some value of ε.

2.4 Flight duration cost

Another cost of choice in trajectory design is the time of flight, when one wants to reach
the target as soon as possible. In that case J = tf−t0 =

∫
dt. This implies that tf is free.

Now assuming that all the ai are independent of m, then ṗm ≥ 0 and the transversality
condition on the adjoint mass (pm(tf) = 0, see 3) implies that it is a negative function.
Hence S̃ is always positive and the maximization of the Hamiltonian gives |T| = T̄ . The
optimal control consists in firing at full thrust constantly.

5

3 Indirect solver

3.1 Single shooting

The PMP also provides so-called transversality equations, linked to the boundary condi-
tions on the state. If the terminal Cartesian variables are fixed, then the corresponding
adjoint variables are free. If the terminal mass is free, then the adjoint mass must vanish.
Thus for fixed times (t0, tf) (hence excluding the case of 2.4), fixed initial state (x0,m0)
and fixed terminal Cartesian vector xf , then the only non-trivial transversality equation
is pm(tf) = 0. This can be seen as solving a two-point boundary value problem, in the
state and adjoint space. The shooting approach consists in starting from a guess on the
value of p0 = p(t0) and iterate on it via differential correction until the conditions are
satisfied. The single version uses propagation from t0 to tf (in contrast to splitting the
interval for robustness purposes as done in so-called multiple shooting). In summary, it
requires solving for the following non-linear system:{

x(tf)− xf = 0
pm(tf) = 0

(19)

seen as a function of p0.

3.2 Implementation details

In Orekit, finding a zero of the shooting function is done with a simple Newton-Raphson
approach, encoded in NewtonFixedBoundaryCartesianSingleShooting (note that its an-
cestor class AbstractIndirectShooting is very generic and can be leveraged upon for cus-
tom use). It is worth mentioning that it works fine with backward propagation (t0 > tf),
which is useful when the mass is known at the end rather than at the beginning.

The present implementation of single shooting utilizes Automatic Differentiation to
obtain the derivatives needed by the Newton update. In practice, it means that p0

defines the variables of a so-called Taylor Differential Algebra, in which all steps of
the integration scheme are performed. When a switch occurs, it requires special care:
one needs to introduce an extra intermediate variable, as done for example in [5] and
explained thereafter. Let ts be the time when the switching function (t,x,p) 7→ g(t,x,p)
reaches a critical value, say 0, detected during integration and triggering a change in
the control law. From propagation up to ts, one has a Taylor expansion of (x,p)(ts) at
order 1 in p0. Let us then introduce dt = t − ts as an additional independent variable.
By evaluating the differential equations in this new algebra, one can form the adequate
expansion of the state x(ts)+ẋ(ts)dt and the adjoint, before evaluating g. Let us now now
swap dt and g as variables, the latter becoming independent. This is done by inverting
a so-called Taylor map [2], which at first-order boils down to a matrix inversion. Next,
by setting the variation of g to zero, one goes back to the original algebra and gets the
derivatives taking into account the fact that the switch occurred. The propagation can
finally resume with the next integration step.

6

3.3 Examples

The reader can refer to the FixedBoundarySingleShooting file in the Orekit tutorials
repository for examples with the energy cost applied to heliocentric trajectories. In
particular, it is shown how the solver can be used sequentially, adding up constraints,
using the obtained adjoint vector as initialization for the next one, starting with the cost
from 2.2.1 and a no-control guess p = 0. Note that the shooting method works with
both Orbit- (with CARTESIAN OrbitType) and AbsolutePVCoordinates-based numeri-
cal propagation.

References

[1] R. Bertrand and R. Epenoy. New smoothing techniques for solving bang–bang op-
timal control problems—numerical results and statistical interpretation. Optimal
Control Applications and Methods, 23(4):171–197, 2002.

[2] M. Berz. Modern Map Methods in Particle Beam Physics. Academic Press, 1999.

[3] M. Cerf. Optimization techniques ii: Discrete and functional optimization. In Opti-
mization Techniques II. EDP Sciences, 2023.

[4] G. Colasurdo and L. Casalino. Indirect methods for the optimization of spacecraft
trajectories. Modeling and Optimization in Space Engineering, pages 141–158, 2013.

[5] P. Di Lizia, R. Armellin, A. Morselli, and F. Bernelli-Zazzera. High order opti-
mal feedback control of space trajectories with bounded control. Acta Astronautica,
94(1):383–394, 2014.

[6] E. Trélat. Optimal control and applications to aerospace: some results and challenges.
Journal of Optimization Theory and Applications, 154:713–758, 2012.

7

