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Abstract

This technical note presents the results as well as the implementation of the covariance blending method,
based on "Efficient Covariance Interpolation Using Blending Of Approximate State Error Transitions" by
Sergei Tanygin, in the open source low level space dynamics library Orekit available at https://www.orekit.org/.

Introduction

As of 2023, space situational awareness is becoming a crucial issue as constellations, made of thousands of
satellites, are becoming a reality. In this light, covariance propagation and interpolation are necessary for
operators to compute the right collision probability and hence, to realize a collision avoidance maneuver
when necessary. That is why Orekit, which currently does not handle covariance interpolation, needs new
methods to stay up to date with this evolution in the space field.

First, this document briefly explain how blending differs from a standard interpolation. Main differences
and difficulties between [1] and the current implementation are detailed. Results with two-body keplerian
model and full force model are presented using a very similar test case as the one presented in [1]. Finally,
an investigation is conducted on orbit blending to better understand its effectiveness compared to standard
quintic Hermite interpolation.

Covariance blending

The "blending" approach of [1] will be briefly explained in this section. For more information, feel free to
investigate [1] as it will be much more detailed.

In the beginning of [1], the commonly known "interpolating" approach is promptly differentiated from the
introduced "blending" approach. Indeed, while the interpolation uses the information from the tabulated
states and covariances (and eventually their time derivatives), the goal of blending is to propagate both tab-
ulated state covariances to the same time t and blend them using a smoothstep function.
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Figure 1: A smoothstep function

This method brings multiple benefits, the main one being that it ensures the positive definiteness of the
blended covariance matrix whereas a standard interpolation technique does not fundamentally guarantee
this property.



Additional complexity

One of the main problem encountered while implementing the new blending method was that "approxi-
mate state error transition matrix" mentioned in [1] was not detailed. Thus, it was first assumed that it was
referring to the approximate state error transition matrix shown in [2, p. 811] :
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However, this approximate state error transition matrix gave very unsatisfying results. Indeed, this matrix is
built using Taylor series and cannot be used when A¢ becomes significant in front of the orbital period. In
[3], Alfano suggests that At should not exceed 15° of orbital motion.

A straightforward solution to this problem was to use the exact state error transition matrix for a pure kep-
lerian motion defined in equinoctial elements to avoid singularities [}
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Then the following procedure is needed to propagate the tabulated covariances to the interpolating time ¢
in cartesian elements :

1. Convert adjacent tabulated covariances from Cartesian to equinoctial elements (assuming that tabu-
lated covariances were defined in Cartesian elements) (see [4]).

2. Compute equinoctial state error transition matrix using[2}
3. Compute forwarded and backwarded covariances to interpolating time .
4. Blend them using a blending function.

5. Convert the blended covariance from equinoctial to cartesian elements (assuming that the user want
to define output covariance in Cartesian elements).

However, this solution comes with an additional cost being the need to know the state in order to convert
from cartesian to equinoctial elements and vice versa. This is especially true at interpolating time ¢ where
we do not know the state. Hence, the need to interpolate the state as well as the covariance at .

INote that, later on, it will still be referred to as the keplerian state error transition matrix as it is the most intuitive way to
understand it.

2An equivalent state transition matrix which include J2 impact could be used to be even more accurate. However, it was not
studied here because of time constraints.



Orekit implementation

In order to implement blending inside Orekit, it was first decided to implement the basic elements necessary
for blending in Hipparchuﬁ

* Addition of a Blending interface providing a method to blend arithmetically object with other object
using a blending value comprised between [0:1]

* Addition of a SmoothStepFactory class enabling easy creation of SmoothStepFunction for the user.

These additions can be visualized in[2/below :
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Figure 2: UML diagram of the blending implementation in Hipparchus [Issue 212]

Regarding the implementation in Orekit, a refactoring of the way interpolation was done was deemed neces-
sary. In this light, a TimeInterpolator interface was added as a way to remain very modular. Interpolating
and blending classes would implement this interface, and the user would always expect the same "interpo-
late" method signature. A very simplified UML representation of the Orekit implementation is shown below
inBl:
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Figure 3: UML diagram of the blending implementation in Orekit [Issue 970]

The TimeInterpolator interfaceisin factimplemented by lots of classes through AbstractTimeInterpolator
but they are not shown here as they would hinder the diagram readability in addition to be out of context. A
"Field" version also exists but it is not mentioned for the same reasons mentioned previously.

3The Hipparchus project is a library of lightweight, self-contained mathematics and statistics components addressing the most
common problems not available in the Java programming language. It serves as a foundation to Orekit regarding everything related
to mathematics



Tests results

In this section, the test case used here will first be presented and compared to the one in [1]. Then the re-
sults computed using a simple keplerian propagation model as well as the full force model will be detailed.
In both cases two methods will be compared and the results will be briefly discussed. The "reference data"
mentioned later on refers to the data generated with a one-second step, it serves as a basis to evaluate the
data obtained through both methods.

Test case

The test case used here is slightly different from the one in [1]. In both cases, the same poorly tracked LEO
object evolving in a highly dynamical propagation environment is defined :

Orbit keplerian elements
a (km) e i(%) w (%) Q () M (%)
7283.18 | 0.01945 | 98.35 | 77.72 | -69.6498 | 53.9737

Table 1: Test case initial orbit in keplerian elements

Reference epoch 22 Nov 2008 19:00:00 UTG
Positionin GCRF X, Y, Z) | -2397.20km | 4217.85km 5317.45 km
Velocity in GCRF (X,Y,Z) | -1.3039km/s | 5.5589 km/s | -4.8396 km/s

Gravitational Constant 398600.4418 km3/s?

Table 2: Test case initial state in cartesian elements

Reference epoch 22 Nov 2008 19:00:00 UTG
Position Sigmas in GCRF (X, Y, Z) 98.676 km | 420.547 km | 366.438 km
Velocity Sigmas in GCRF (X, Y, Z) 0.194 km/s | 0.341 km/s | 0.430 km/s

Position Correlations in GCRF (XY, XZ, YZ) -0.999985 0.999983 -0.999997
Velocity Correlations in GCRF (XY, XZ, YZ) -0.999998 -0.999997 0.999997
Cross-Correlations in GCRF

(Position X, Velocity X, Y, Z) -0.999982 0.999989 0.999983
(Position Y, Velocity X, Y, Z) 0.999997 -0.999999 -0.999995
(Position Z, Velocity X, Y, Z) -0.999996 0.999996 0.999999

Table 3: Test case initial covariance in cartesian elements

Then, results were obtained using the open source low level space mechanics library Orekit [5], this led to
slight differences with the test case configuration used in [1] :

¢ Use of the Dormand-Prince 8(5,3) (i.e. order 8 for the integration and order 6 for error estimation)
instead of the Runge-Kutta-Fehlberg 7th order integrator with 8th order error control.

¢ Use of the IERS2010 EIGENG6S 21x21 ellipsoid and gravity field instead of the WGS84 EGM96 21x21
(although the same ellipsoid and gravity field could have been used if needed).

¢ Use of the NRLMSISEO00 atmosphere instead of the Jacchia-Roberts.

¢ Finally, the albedo and relativity correction models were not mentioned so the models used here might
differ.



Gravity Field IERS2010 EIGENGS 21x21
Tides Permanent Solid Tides and Ocean Tides 4x4
Third Body Gravity Sun Moon
Space Object Spherical | Area 20 m? Mass 0.04 kg
Drag Isotropic drag with NRLMSISE00 Cy=22
SRP Dual Cone Shadow Model C =1
Eclipsing Bodies Earth Moon
Albedo Knocke Earth Albedo and IR emission [6]
Relativity Correction Included [7, equation 3.146]

Table 4: Full Force Model Parameters used

Despite a slighlty different model, Figure[4can hardly be distinguished from (T} Figure 6] :
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Figure 4: Evolution of Position and Velocity Sigmas in GCRF over 2 hours.

Methodology
Interpolating and blending methods
In [1], it is concluded that the best three methods are the following:
¢ Quadratic two-body blending.
¢ Quadratic secular J2 blending.
¢ Quintic keplerian interpolation (assumed to be hermite interpolation).

This paper will focus on the quadratic two-body blending and quintic keplerian interpolation only as they
were easily implementable.

Comparison method

To compare each method with the reference, the absolute and relative Root Mean Square, more commonly
referred to as "RMS", of the position and velocity sigmas errors will be used.

They are defined as follows :
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Keplerian model

The first tests were run using a simple two-body model. As pointed out in [1], no differences are expected
with the reference results as the blending method is, by construction, using this very model to interpolate
the covariance. Moreover, it is shown in [1] that the covariance in keplerian elements behaves quadratically

so any polynomials of order = 2 should capture this evolution exactly.
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Figure 5: Evolution of Absolute Position and Velocity Sigmas Errors in GCRF over 2
hours with steps of 40mn along Two-Body Reference Orbit.

As shown in Figure[5|and except for some numerical noise, both the quadratic two-body blending and quin-
tic keplerian interpolation methods give exact covariance interpolation as anticipated.

Full force model

In order to reproduce the results of [1} Figure 9], it was first assumed that the "true" state at time ¢ from the

reference was known.

1.2 1.2 |
Quintic Keplerian Interpolation Quintic Keplerian Interpolation
Quadratic Two-Body Blending ----- Quadratic Two-Body Blending -----
€ 1- - 0 1+ 4
~ £ ~
£ £ /
= = /
[ - i
s 08- b 5 08 / i -
£ \ £ o /
w \ w ! /
« \ " /
s \ ol / \
5 o6 - ; . E o6 / A
2 0 | o 0 ; \
v N ) v / i )
s RN \ > / il ! A
2 SN \ = / i ! A
= 1 | \ I ! ) ¥ y
@ \ \ o 1
o 04 \ ' o 04 ! H H ]
o 1 \ - \ > h Pt 3
5 ] \ / \ 'S K i £ 3
a i \ / \ o ! Vo \
- w ! f
= H N /. 4 = K Vo 3
< 02 % ¥ v - £ 02f v -
i \f \ -~ i v f\\
i vl LY % / Vi 1\
i v \k \ / \ IR
| \ Vi s \ / \i A
ot Y i 0 1 i}
0 2400 7200 0 2400 7200

Time (in s) Time (in s)

Figure 6: Evolution of Absolute Position and Velocity Sigmas Errors using the "true"
State in GCRF over 2 hours with steps of 40mn along Full Force Reference Orbit.

Noticeable differences can be seen between Figure [6| and [1}, Figure 9]. However, the order of magnitude
remains very similar and even slightly better than [1}, Figure 9].

Although the slight differences in models arguably contribute to these discrepancies, they cannot explain
such differences observed here. As no explanation could be found and the results nonetheless satisfying, it
was decided to pursue the study using an interpolated state instead of the "true" state.

Several methods to interpolate the state were possible given the four tabulated states available (with both
derivatives) but after several testing, using three tabulated states as interpolating points gave the best results.



Hence, only the results which interpolate the state with the Hermite interpolation polynomials of degree 8

are shown in Figure[7]:
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Figure 7: Evolution of Absolute Position and Velocity Sigmas Errors using an Inter-
polated State (Hermite Interpolation Polynomials of Degree 8) in GCRF over 2 hours
with steps of 40mn along Full Force Reference Orbit.

Here, the quintic keplerian interpolation is only slightly better than the quadratic two-body blending but it

can be seen that the error is now mainly due to the introduction of an interpolated state.

It was then thought that the concept of blending could be applied to the interpolated state as well, hence
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Figure 8: Evolution of Absolute Position and Velocity Sigmas Errors using a Blended
State (Quadratic Two-Body Blending) in GCRF over 2 hours with steps of 40mn along
Full Force Reference Orbit.

An unintended consequence of using a blended state is that the same results as |1, Figure 9], regarding the
quadratic two-body blending method, are found. Moreover, results are much better than when the state was
interpolated by polynomials and it can be seen that the quintic keplerian interpolation is superior over the
quadratic two-body blending.



It is pointed out to the reader that, although the RMS of position and velocity sigmas errors seems significant
in absolute terms, they are in fact almost negligible in relative terms as shown in Figure[d]:
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Figure 9: Evolution of Relative Position and Velocity Sigmas Errors using a Blended
State (Quadratic Two-Body Blending) in GCRF over 2 hours with steps of 40mn along

Full Force Reference Orbit.

Finally, the maximum and average relative RMS in position and velocity sigmas errors were computed using
tabulated values with steps of 60, 300, 600, 1200, 1800, 2400 and 3600 s in Figuresand:
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Figure 10: Maximum and Average relative RMS Position Sigmas Errors Using a
Blended State (Quadratic Two-Body Blending) in GCRF when Interpolating Covari-
ance with Different Tabulated Steps along Full Force Model Reference Orbit.
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Figure 11: Maximum and Average relative RMS Velocity Sigmas Errors Using a
Blended State (Quadratic Two-Body Blending) in GCRF when Interpolating Covari-
ance with Different Tabulated Steps along Full Force Model Reference Orbit.

Similarly to the observations of [1], it can be seen that the quadratic two-body blending generally outper-
forms the quintic keplerian interpolation for accurate interpolation of the position sigmas, especially for
closer step between tabulated values, whereas the other method performs better when interpolating veloc-
ity sigmas.

Orbit interpolation

To better understand the effectiveness of blending when applied to orbit interpolation, similar plots to
and[II]were made. In addition, it was thought that the Brouwer-Lyddane and Heckstein-Hechler analytical
models already available in Orekit could be used to improve the efficiency of orbit blending.
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Figure 12: Average (left) and maximum (right) absolute relative position and velocity
errors in GCRF when interpolating orbit with different tabulated steps in the Full
Force Model environment

Starting from a time step of 1800s between tabulated values, Quintic Hermite interpolation begins to show
an exponentially increasing error, whereas all blending methods errors remain relatively constant.



Time step range has then been limited from 60s to 1800s for plot readability.
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Figure 13: Average (left) and maximum (right) absolute relative position and velocity
errors in GCRF when interpolating orbit with different tabulated steps in the Full
Force Model environment

After reducing the time step range, it appears that the Quintic Hermite interpolator performs better both in
position and velocity, while the time step between tabulated values is smaller than 15mn. This interpolator
is then removed so that the other interpolators could be studied in wider time step range.
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Figure 14: Average (left) and maximum (right) absolute relative position and velocity
errors in GCRF when interpolating orbit with different tabulated steps in the Full
Force Model environment

It can be seen in[I4]that the Eckstein-Hechler blending is more precise both in position and velocity inter-
polation, while Keplerian blending is more appropriate for position interpolation than Brouwer-Lyddane
blending and vice-versa for the velocity.

However, it is reminded to the reader that these results only apply regarding this specific test case as the
Eckstein-Hechler is only suited for near circular orbits (e < 0.1) inclination neither equatorial (direct or ret-
rograde) nor critical (direct or retrograde).
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Conclusion

This paper presented the results obtained with blending and interpolating approaches presented in [1] for
computing orbits and covariances between tabulated values. A test case, very similar to the one in [1], has
been used and show that both the covariance quadratic two-body blending and quintic keplerian interpo-
lation methods give very satisfying relative RMS of position and velocity sigmas errors, with 40mn steps, of
around 0.25% and 0.12%.

Given that the quadratic two-body blending approach preserves the positive definiteness of the covariance
matrix and that the usual step between tabulated values should be much smaller than 40mn, this method is
the recommended one to the user.

Furthermore, the concept of blending applied to orbit interpolation has also been investigated and it has
been shown that, on this specific test case, Quintic Hermite interpolation errors in position and velocity
were increasing exponentially when the time step between tabulated values was larger than 15 mn. On the
other hand, blending errors using Keplerian, Brouwer-Lyddane and Eckstein-Hechler model were increas-
ing linearly and remained especially precise at large time steps with maximum position/velocity errors of
respectively 0.10%/0.19%, 0.17%/0.08% and 0.03%/0.02% when using steps of 40mn. For comparison, using
Quintic Hermite interpolation for this time step resulted in a maximum position/velocity of 0.5%/1%. How-
ever, further investigation should be done to understand why blending using the Brouwer-Lyddane model
is inferior to Keplerian blending in position.

Hence, a combination of orbit quintic Hermite interpolation and covariance quadratic Two-Body blending
is recommended to the user when interpolating covariances in a sample where the time step between tabu-
lated values is below a few minutes. A combination of the best compatible analytical modelE]for quadratic
orbit and covariance Two-Body blending would be suggested when the time step between tabulated values
becomes more significant (>10 mn).
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