public class PolynomialRotation extends Object implements LOSTransform
LOS transform
based on a rotation with polynomial angle.LOSBuilder
Constructor and Description |
---|
PolynomialRotation(String name,
org.hipparchus.geometry.euclidean.threed.Vector3D axis,
org.orekit.time.AbsoluteDate referenceDate,
double... angleCoeffs)
Simple constructor.
|
PolynomialRotation(String name,
org.hipparchus.geometry.euclidean.threed.Vector3D axis,
org.orekit.time.AbsoluteDate referenceDate,
org.hipparchus.analysis.polynomials.PolynomialFunction angle)
Simple constructor.
|
Modifier and Type | Method and Description |
---|---|
Stream<org.orekit.utils.ParameterDriver> |
getParametersDrivers()
Get the drivers for LOS parameters.
|
<T extends org.hipparchus.analysis.differentiation.Derivative<T>> |
transformLOS(int i,
org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> los,
org.orekit.time.AbsoluteDate date,
DerivativeGenerator<T> generator)
Transform a line-of-sight and its partial derivatives.
|
org.hipparchus.geometry.euclidean.threed.Vector3D |
transformLOS(int i,
org.hipparchus.geometry.euclidean.threed.Vector3D los,
org.orekit.time.AbsoluteDate date)
Transform a line-of-sight.
|
public PolynomialRotation(String name, org.hipparchus.geometry.euclidean.threed.Vector3D axis, org.orekit.time.AbsoluteDate referenceDate, double... angleCoeffs)
The angle of the rotation is evaluated as a polynomial in t, where t is the duration in seconds between evaluation date and reference date. The parameters are the polynomial coefficients, with the constant term at index 0.
name
- name of the rotation (used for estimated parameters identification)axis
- rotation axisreferenceDate
- reference date for the polynomial angleangleCoeffs
- polynomial coefficients of the polynomial angle,
with the constant term at index 0public PolynomialRotation(String name, org.hipparchus.geometry.euclidean.threed.Vector3D axis, org.orekit.time.AbsoluteDate referenceDate, org.hipparchus.analysis.polynomials.PolynomialFunction angle)
The angle of the rotation is evaluated as a polynomial in t, where t is the duration in seconds between evaluation date and reference date. The parameters are the polynomial coefficients, with the constant term at index 0.
name
- name of the rotation (used for estimated parameters identification)axis
- rotation axisreferenceDate
- reference date for the polynomial angleangle
- polynomial anglepublic Stream<org.orekit.utils.ParameterDriver> getParametersDrivers()
getParametersDrivers
in interface LOSTransform
public org.hipparchus.geometry.euclidean.threed.Vector3D transformLOS(int i, org.hipparchus.geometry.euclidean.threed.Vector3D los, org.orekit.time.AbsoluteDate date)
transformLOS
in interface LOSTransform
i
- los pixel indexlos
- line-of-sight to transformdate
- current datepublic <T extends org.hipparchus.analysis.differentiation.Derivative<T>> org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> transformLOS(int i, org.hipparchus.geometry.euclidean.threed.FieldVector3D<T> los, org.orekit.time.AbsoluteDate date, DerivativeGenerator<T> generator)
This method is used for LOS calibration purposes. It allows to compute the Jacobian matrix of the LOS with respect to the parameters, which are typically polynomials coefficients representing rotation angles. These polynomials can be used for example to model thermo-elastic effects.
transformLOS
in interface LOSTransform
T
- derivative typei
- los pixel indexlos
- line-of-sight to transformdate
- dategenerator
- generator to use for building DerivativeStructure
instancesCopyright © 2014–2023 CS GROUP. All rights reserved.