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Theodore N. Edelbaum **, Lester  L. ~ a c k e t t t  and Harvey L. Malchow 
The Charles  Stark Draper Laboratory. Inc. 

Cambridge. Massachusetts 

Abstract 

A computer code which will rapidly calculate 
time-optimal low thrust t ransfers  is beingdevel- 
oped a s  a mission analysis tool. The final pro- 
gram will apply to NEP o r  SEP missions and will 
include a variety of environmental effects. The 
current  program aasumes constant acceleration. 
The oblateness effect and shadowing may be in- 
cluded. Detailed s ta te  and costate equations a r e  
given for  the thrust effect., oblateness effect. and 
shadowing. A s imple but adequate model yields 
analytical formulas for  power degradation due t o  
the Van Allen radiation belts for  SEP missions. 
The program avoids the classical  singularities by 
the use of eouinoctial orbital  elements. Krvloff- 
Bogoliuboff averaging is used to facilitate rapid 
calculation. Results f o r  selected cases  using the 
cur ren t  program a r e  given. 

Introduction 

This paper discusses  the cur ren t  version of a 
mission analysis computer program being devel- 
oped for Goddard Space Flight Center. The pro- 
gram rapidly calculates time-optimal low thrust  
t rans fe rs  between any two geocentric orbits in the 
presence of a s t rong gravitational field. The final 
program will encompass both nuclear o r  solar  
electric powered t ransfer  and will a l so  consider 
the effect of one high thrust impulse. Several en- - vironmental effects will be considered including 
shadowing, oblateness, and the solar  cel l  power 
degradation due to the Van Allen radiation belts. 

The code for  the simplified constant accelera- 
tion problem has been completed. This code in- 
cludes the effects of ear th  oblateness and the shad- 
ow effect. A subroutine calculates the times of 
entrance and exit from earth's shadow fo r  a given 
orbit  and the thrust is s e t  to z e ro  while the space- 
craf t  is in shadow. 

The application of optimal control theory 
yields a two point boundary value problem which is 
solved using a modified Newton-Raphson iteration. 
The new code has two distinctions. The singulari- 
ties that can occur when the eccentricity is z e ro  
o r  the inclination is zero, and when classical  or- 
bital elements a r e  used, a r e  eliminated by the use 
of equinoctial orbital  e ments. (1) Kryloff- ($7 Bogoliuboff averaging 1s used to insure rapid 
calculations of trajectories.  Averaged orbital  
elements yield a f i r s t  approximation to the actual 
elements. Five orbital  elements vary slowly over 
severa l  orbits, and the sixth, corresponding to 
position in an orbit, is eliminated by the averag- 
ing. Averaging over a single orbit  is performed 
by quadrature. The differential  equations for the 
approximate s ta te  and costate a r e  solved numeri- 
cally using a time step equal to severa l  orbital  
revolutions. 

Cefola has derived the variation of param- 
e te r  equations and the perturbation due to oblate- 
ness  in t e rms  of equinoctial orbital elements, but 
not the adjoint equations which a r e  used here. The 
method of averaging has been used extensively, 
however, not fo r  the present problem. Edelbaum 
(3.4) has used averaging to calculate analytic solu- 
tions fo r  special cases  of optimal low thrust tra- 
jectormes. 'and others have k e d  averaging when 
considering effec's such a s  oblate e s s  th'rd body 
effects. and nonoptirnal thrusting.ll.-5, 6 j  

In summary,  the current  version of the code 
calculates the constant acceleration low thrust t ime 
optimal geocentric transfer between elliptical or- 
bits and .I) includes the effects of oblateness and 
shadowing, 2)  avoids the classical  singularitiea, 3) 
is rapid due to averaging, and 4) is general. s ince 
it calculates the optimal t ransfer  between any 
initial orbit  and any final orbit  o r  a subset of the 
final orbital  elements. Previous simulations have 
not combined al l  these qualities. 

In the followine section. a brief summary  of 
- " -  - -  - - . . 
jectory optimization problem is presented. In 
succeeding sections a description of the equinoctial 
orbital  elements is given, followed by a descrip- 
tion of the optimization problem that we a r e  con- 
sidering. The mathematical equations for  a five 
dimensional s ta te  consisting of the orbital  ele- 
ments a r e  presented, followed by the equattons 
needed to include the effects of shadowing and of 
oblateness. The equations for  a seven dimensional 
state,  including mass and accumulated particle 
flux (of which power is a function) a r e  a l so  given. 
Next is a description of the computer program a t  
its current  s tage of development, followed by a 
discussion of the modeling of the effects of Van 
Allen radiation on the power output of the so la r  
cells. Finally some representative examples of 
numerical resul ts  produced by the ear ly  version of 
the computer code a r e  presented. 

A typical t ransfer  i s  one s tar t ing in a low 
altitude. eccentric, inclined orbit  and ending at  
circula; g e ~ ~ y n c h r o n o u s  orbit. The resul ts  show 
trajectories and AV's for  the examples of t r am-  

Averaging 

A great savings in computer time can be 
effected by considering a f i r s t  approximation to 
the s ta te  and costate. Short period variations in 
the s ta te  and costate a r e  eliminated by the averag- 
ing technique. Let the s ta te  include five orbital  
elements indicating the s ize ,  orientation and shape 
of the orbit, but not the position of the spacecraf t  
in the orbit. Assume that these elements vary  
slowly over one orbit. The s ta te  may also include 
other quantities which vary slightly over one orbit. 
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The averaged Hamiltonian can be defined as 

where H is the unaveraged Hamiltonian and T is 
the orbital period. When calculating this integral 
the s ta te  and costate a r e  held fixed. The motion 
nf the spacecraft  is assumed to vary  in a manner 
described by Kepler's equation over the averaging 
integration. The f i r s t  approximate s ta te  and co- 
s ta te  satisfy the Euler- Lagrange equations 

where the overbar indicates the approximate 
quantities. 

In some cases  the averaging integral can  be 
solved analytically; otherwise a numerical quad- 
ra tu re  formula may be used. The differential 
equations can then be solved numerically using a 
time s tep which is much larger  than but unrelated 
to the number of orbital  revolutions. 

Equinoctial Orbital Elements 

By using equinoctial orbital  elements the 
-singularities that occur for ze ro  eccentricity o r  

inclinations of z e ro  o r  ninety degrees  when using 
classical orbital elements a r e  avoided. (For  in- 
clinations near 180' retrograde equinoctial orbital  
elements can be used, although we will not consid- 
e r  that case in this paper.) The formulas given in 
this section a r e  taken f rom Cefola(1). 

The direct  equinoctial orbitalelements are de- 
fined in t e rms  of the classical  orbital  elements, a, 
e ,  i, n, and w by the formulas 

i q = tan (-)  cos 0 
2 

In Cefola (1) the sixth orbital  element is the mean 
longitude at  epoch. In this paper we will consider 
the eccentric longitude, F, a s  the sixth element, 
defined by 

where E is the eccentric anomaly. This element 
mil? be eliminated f rom the dynamical equations by 
the averaging nrocess. 

The eauinoctial coordinate f rame is defined 
-hy the bas& vectors f ,  *g, G, which a r e  given 

bclow with respect to-anearth equatorial coordi- 

This coordinate f rame is illustrated in Figure 1 
where i s  normal to the orbital  plane. - 

The spacecraft  position and velocity are 
given by 

r =  x l j + y  g" - 1 - (8) 

= 2 t + + , p  - 1 - (9) 

where 

na2 z 
k1 = [ h kgcosF - ( I -h  p) s i nF  ] (12) 

and 1 - 
8 = 

1 + m  

p i s  the ear th  gravitational constant. Kepler 's  
equation is given by 

The Optimization Problem 

Let x represent  the s ta te  (which for  the NEP 
case incrudes the five orbital elements and for  the 
SEP case includes the five orbital elements, mass. 
and accumulated particle flux, of whkh  power is a 
function) and the costate. Orbital t ransfer  t ime 
is to be miniEized. The initial s ta le  is assumed 
to be specified and all  o r  some combination of the 
final orbit  elements a r e  specified. 

nnte frame. The differential equation for  the s ta te  can be 



written a s  obtained f rom Kepler's equation. Let  

; = g l ( r .  F, t )  + a(x ,  t )  ~ ~ ( 5 ,  F, t) I? (18) 1 dt  -- - - 1 ,  F = - - 
T d F  

(26) 

where a(?,  t )  represents  the magnitude of the - thrust  acceleration which can be written a s  a func- Then the Euler-Lagrange equations for  this system 
tion of time in the NEP case  o r  a s  a function of are 
mass  and accumulated flux (or power) in the SEP agT n case; 6 is the thrust  direction; - - x = - .- = / i(z,&f, F) ~ ( 5 . 1 , ~ )  d F  (27) 

g ( x ,  F, t )  includes al l  other effects not depen- 
dknf on thrust  direction such a s  oblateness and the 
derivatives of mass  and flux. 

The Hamiltonian is given by 

H '. T . 
_x x (20) 

This is maximized by setting 

Since we a r e  minimizing time,H"(tf) r y s t  equal 
one. Transversality conditions and condltlons on 
the final orbital elements yield five (or seven) 
additional final conditions. The two point boundary 
value problem can be solved using a modified New- 
ton-Rapbson method by iterating on the initial co- 
s ta te  and the final time. t,. in order  to meet the 
final conditions. In ou; pFogram the partial deri-  
vatives of the final conditions with respect to the 
initial costate i r e  calculnted numerically. 

Note that the anoroximate thrust direction in ~~ 

the equinoctial cooGdinate f rame on a particular 
The maximum value of H, denoted by He, is then orbit  can be obtained by substituting the f i r s t  ap- 
given by proximate s ta te  and costate into Equation (21) 

T 
H* = A g l + a ~ ~ 2 % ~  (22) G ~ ~ ( ~ , F ) x  

u = - (29) 
The metho3 of averaging may now be used to 

determine the f i r s t  order  approximation to the 
IG  2 T ( X ~ ) x  - 1 - mean mstion of the system. The averaged Hamil- 

tonian, H, is defined by - Equations for a Five Dimensional State 
'I' t+- 
2 In this section the equations needed for  the five 

" = '  / 
T 

H* (z,&f. F( t ) )  d t  (23) dimensional N E P  case will he given. Only the 

T effect of thrusting will be considered. Many of 
t- - these equations will be applicableto the seven di- 

2 mensional SEP case which will be described later.  
To avoid confusion with the seven dimensional 

where T i s  the pericd of the orbit and where the state,  let  z be the vector of the five orbital  ele- 
five orbital  elements, their adjoints, and any ex- ments. - 
plicit t ime dependence not involving the motion of 
the spacecraft  in its orbit (indicated b y f )  a r e  held The unaveraged variation cf parameters  
constant over the averaging interval. (For  exam- equation is given by 
ple, in the five dimensional. NEP, constant thrust ' 
case, the thrust acceleration, which is an explicit M ~ (  z. F)X - 
function of time, is held constant over the interval.. ' = a( t )  M(z. F) - - 
Also for the SEP case, the sun's direction, a func- 
tion of time, is held constant when calculating the MT(z F)X I I _. _ 
shadow location. ) Averaging with respect  to the 
eccentric longitude F, H is given by Fo r  constant acceleration 

a ( t )  = a. 
n - 1 d t  13 = / H* ( j ,Z ,T ,  F) (dF) d F  

(24)  and for  constant thrust 

w C - n a( t )  = - mo -7 
where 

If the power decays exponentially 

T * = - (1 - XcosF - XsinF) (25) age- bt - d F  2n a ( t )  = 



Here  m is the mass  flow r a t e  

h is defined by 

and c is the jet velocity. The initial acceleration 
i s  defined by 

2Po 
a. =.,-- 

moC 

and M i s  the 5 x 3 matr ix  

The elements of this matrix a r e  listed in Table 1. 
In addition to the quantities defined in the section 
on equinoctial orbital  elements, the partials of X 
and Y with respect  to h and k a r e  required. Theee 
a r e  listed in Table 2. These partials differ f rom 
those in Cefola since we consider F  a s  an orbital  
element ra ther  than a s  a function of h and k; thus 
when partials a r e  taken. F is held constant. This 
assumption also affects the appearance of the ex- 
pressions given in Table 1 when compared with 
Table 3 of Cefola. However, if the expressions 
a r e  written out in detail  they a r e  s een  to be 
identical. 

The averaged Hamiltonian is given by 

The Euler- Lagrange equations a r e  then 

and 

If Ti  is the i th component of Z, then 

The partials of M with respect  to a ,  h. k, p, and q 
a r e  given in Tables 3 - 7 . .  In addition the expres- 

.;i sions for the partials of X I  and Y1 a s  well a s  the 
second partials of X and Y l  a r e  needed and s o  a r e  
listed in Tables 8 an$ 9. Fmally 

L J 
The integrals in Equations (39) and (40) can 

be evaluated by a quadrature formula. We have 
typically used a 16 point gaussian quadrature. 

The Shadow Effect 

F o r  SEP  missions, the thrusting will be shut  
off while the spacecraft  is in the earth's shadow. 
The entry and exit angles a r e  needed in o rder  t o  
perform the averaging integral. In calculating 
these angles the following assumptions a r e  made. 
The shadow is cylindrical: the ear th  revolves 
around the sun in an elliptical orbit: and over one 
spacecraft  revolution, the sun's direction i s  fixed. 

State and Costate Equations 

It is assumed that immediately upon entrance 
to the shadow, the thrust is turned off, and lm- 
mediately upon exit, it is turned on. The integrals 
fo r  the approximated s ta te  and costate. Equations 
(39) and (40). must he altered appropriately. 
Since the thrust acceleration is z e ro  when the 
spacecraft  is in shadow, Equation (32) becomes 

where only the limits on the integral have been 
changed. F2 corresponds to the entrance angle 
and F to the exit angle, and we assume that F 2  
F ,  - F < 8 The s ta te  differential  equa- 
tion ls t en 

Since F and F  a r e  functions of the orbital  ele- 
ments, %y ~ e i h h i t z ' s  rule. 



The Shadow Equation 

F r o m  geometrical considerations an equation 
can be derived which the entry and exit angles 
must salisfy. Such an equation is given in Esca- - ba1(7), and the equation given in this  section i s  
essentially the same. except that it is given in 
t e rms  of equinoctial orbital  elements. 

The spacecraft  position i s  given by 

where X and Y were given in Equations (10) and 
(11). ~ e 4  the uAit vector f rom the ear th  t o  the six 
be given by 

This is in t e rms  of the equinoctial coordinate 
f r ame  and thus depends on the equinoctial orbital  
elements p and q. If a, designates the earth's* 
radius, the cosine of the angle between r and 5 i s  - 
given by 

1 

Squaring and rearranging 

This is the shadow equation which must be satis- 
fied by the entry and exit angles. XI and Y1 a r e  
fur.ction% of cos F, s i nF ,  a ,  h, and k (see Equa- 
tions (10) and (11)). By fur ther  manipulations one 
can derive a quartic equation in cos F. The coef- 
ficients of this quartic equation a r e  given in Table 
10. Spurious roots can he eliminated by the cri-  
t e r ia  that S = 0 and that r < 0. In addition, for  
the entry angle aS/aF < 0-an3 for  the exit angle 
a s / a ~  > O. 

Derivatives of F and S 

The derivative of F with respect  to? is need- 
ed to evaluate the costate equation. It cXn be ob- 
tained implicitly from the shadow equation. 

These partials a r e  listed in Table 11. Xote that 
in calculating 3S/ap and aS/aq we have taken into 
account the fact that the sun 's  direction is given 
in equinoctial coordinates. 

Oblateness 

In previous sections we have considered only 
perturbations to the inverse square motion caused 
by thrusting. in this section the effect of ohlate- 
ness  (J2) i s  considered. This i s  an additive t e r m  
to the variation of parameters  formulas such a s  in- 
dicated by g l ( z ,  7, t) in Equation (18). The single 
averaged perturbmg potential due to J 2  has been 
calculated in terms of equinoctial coordinates by 
Cefola(1) and is repeated he r e  in Table 12. Re i s  
the equatorial radius of the ear th  and J 2  =.0010827. 
These formulas enter the averaged Hamiltonian as 
coefficients of the costate (outside the integral 
since the averaging effect has already been ac- 
counted for) .  

If 'i indicates the perturbation due to thrust 
a s  g i v ~ a i n  Equation (39). then the Harniltonian i s  
given by 

The s ta te  equation is 

The costate equation is, 

aii, az 
f T '  - - -T -J2 - - = - A  - 

a2 a? - 

The partials indicated by a?J2 l a E  in the above ex- 
pression a r e  given in TablFs l G l 7 .  

Equations for  a Seven Dimensional State 

Up t o  this point we have assumed a five dimen- 
sional s ta te  consisting of the five orbital  elements 
a, h, k, p, and q. Thrust was not a function of the 
s ta te  (except in the case of shadowing when the en- 
t r y  and exit times were a function of the orbi ta l  
elements.). Fo r  SEP missions the so la r  cell  Der- 
formance ;.ill degrade in the presence of ~ a n ' ~ l l e n  
radiation. This w i l l  cause the amount of power de- 
livered to the thrusters  to decrease with time. The 
power degradation can be modeled a s  a function of 
the amount of equivalent electron flux intercepted 
by the spacecraft  so la r  cells. The accumulated 
flux is dependent on the trajectory a s  well a s  time 
(through the ear th 's  rotation), The modelling of 
the Van Allen radiation and its effect on the so la r  
cells is discussed in a la ter  section. Power deliv- 
(:red to the thrusters is 31s" influenced by the vary  
inc distance t o  tile sup. 2s a result of thr ellipticity 
o f t he  ear th 's  orbit. In this section. we will simp- 
ly assume that we have analytic expressions given 
for  power a s  a function of accurnulated flux (and 
t imf)  and for  the flux rate.  



P is assumed to be ze ro  when the spacecraft  i s  in 
shadow. 

F o r  this study. it is assumed that thrust  level 
is proportional to input power. i. e. thrust i s  a 
function only of beam current  with specific im- . - pulse and efficiency constant. Thrust acceleration 
is given by 

2 P  a = -  (56) 
m c  

and mass  flow r a t e  by 

Thus we can consider a seven dimenkional s ta te  of 
five orbital  elements, mass ,  and accumulated 
particle flux. 

X = - (58) 

Since m and N a r e  varying slowly the f i r s t  approx- 
imation of these quantities as well as the orbital  
elements can be considered. 

In the remainder of this section the s ta te  and 
costate derivative equations will be given. Only 
thrusting in an inverse square field will be con- 
sidered. The oblateness effect could eeasily be in- 
cluded a s  in the five dimensional case. 

The averaged Hamiltonian is given by 

and exit angles respectively. 

The approximate costate must  satisfy 

These expressions can be simplified somewhat 
using Equation (42) and by denoting 

Hz a 

The approximate s ta te  must satisfy: - Z P ~ ,  t )  F2  ~ ~ ( f *  F,& 
Z = - M(?,F)- s6.T. F)dE: 

iiic F1 MT(7 F)X [ HN = i N E j  I -' -2 
where 

(60) H = HZ + Hm + HN, 

n s,o that - i; = 1 f ( ~ ,  F,T) s(h.ii, F) dF. - n 
where TL is the time spent in sunlight. T i s  the 
orbital  perlod. F2  and F1 a r e  the shadow entry 



Then 

T 
0 

cos F2 - cos F1 

+ % m y  [siinF2; s i n F j  

(64) 

Note that azla? wasxiven by Equation (41) but with 
a ( t )  replacFd Fy 2P(N)/%c and dF /&  by Equation 
(51). 

- 

Organization of the Computer Code 

The computer program has an outer loop for  
the solution of the two point boundary value prob- 
lem. Estimates of the initial costate and final 
time a r e  read in. A modified Newton-Raphson 
method is used to i terate on the final conditions. 
Individual traiectories a r e  evaluated bv calline a 
prediction-&rector differential equat"ion solving 
subroutine. The differential equation routine calls 
the function evaluation subroutine which in turn 
calls a quadrature subroutine to evaluate the 
quantities which must be numerically averaged 
(such a s  thrust effect). The function routine also 
calls other subroutines to find the shadow entry 
and exit angles and to evaluate analytically ave r -  
aged functions (such a s  due to oblateness). The 
final converged values for initial costate and final 

e time a r e  printed and the time history of the ex- 
t remal  trajectory is a lso printed. 

Various two point boundary value problem 
iterator routines, differential equation solution 
subroutines, o r  quadrature subroutines may be 
used. In the program's current  s tage of develop- 
ment constant acceleration is assumed. Oblate- 
ness and shadowing may be included. Final condi- 
tion options include al l  five orbital  elements speci- 
fied o r  a ,  e, and i specified and nand  wfree. 
Either a 4, 8, 16, o r  32  point. gaussian quadrature 
subroutine may be used. Some examples of resul ts  
using this program a r e  given in a la te r  section. 

Solar Cell  Degradation Model 

P a r t  of the low-thrust geocentric t ransfer  
problem involves a consideration of the effects of 
particulate radiation in the Van Allen belts. The 
radiation belts have a well-defined spa t i a l  struc- 
ture,  and hence SEP missions must consider the 
position-dependent degradation of so la r  cells as an 
important element in orbit  shaping. 

F o r  use with the ootimization code it was re- 
quired to construct a s h a r  cell degradation model 
that was compatiblr wtth the overall analytical 
framework of the orbit-raising problem.. To sat is-  
fy this requirement the model was made analytical. 
that is, defined by analytic functions on the ent i re  
space of the related variables. This approach a l so  
yields a model whose run time i s  reasonable in re- 
lation to the other problems being solved. 

In this section a r e  given the analytic expres- 
sions for  the spatially dependent damaging particle 
flux, n(r(t)) .  and for thruster  power a s  a function 
of the tEtal degrading particle fluence, P(NL where 
fi = n(r(t)). - 

There a r e  a number of alternate computational 
approaches to the problem of obtaining the quanti- 
ties n(r( t ) )  and P(N). The approach taken h e r e  is 
to consfruct a geometric space of equivalent lMEV 
electron flux. Each geometric Doint in this soace  
i s  associated ana ly t i~a l ly  with a' flux value w k c h  
provides the required N value. 

The model assumes n-on-p type sil icon cells 
with 10 ohm-cm base resistivity. A cover shield 
thickness of 6 mils is assumed with sellli-infinite 
back shielding. 

The particle field is assumed to be.azimuth 
independent. At a point R, A in geomagnetic co- 
ordinates, where R is radius expressed in ear th  
radi i  and is tine geomagnetic latitude, the equiv- 
alent IMEV electron flux is modeled by the func- 
tion Q 

where the functions fi(R,X) a r e  given by 

with 



The  constant  coefficients Ai a r e :  

and 

The analytical  function fi was  derived by the  
application of an  IBM mul t ivar ia te  r eg ress ion  code 
t o  a sample  of the f ield da.ta points. The resul t ing  
function has  continuous pa r t i a l  der ivat ives  in R and 
A and exhibits  the proper  monotonicity in the  outer  
p a r t s  of the field. The R coordinate i s  sampled a t  
l R e  in tervals  f r o m  1. 2Re out to the last increment  
which yields a f lux g r e a t e r  than 105 lMEV elec- 
t r o n s / c m 2  sec .  Also the field i s  sampled at Re = 
1.0166 (a 100 km alt i tude) to bet ter  define the  low 
alt i tude orbi t  field. Angular s a m p l e  points are 
chosen at 10' in tervals  f r o m  O 0  to 60'. 

T o  ca lcula te  the par t ic le  ene rgy  s p e c t r u m  the  
R, A s a m p l e  points have been t r ans fo rmed  into 
magnetic coordinates B (field s t rength)  and L (in- 
t eg ra l  invariant)  by use  of the r.agnetic dipole 
transformation: 

LJ 2 
L = R l c o s  X 

3 
(66) 

2 112 B = ( 3 0 / R  ) ( I  + 3 s i n  A )  

T h r s e  coprdinates werc  then used a s  inputs to the 
h:ODEI.(" computer code which provides spec t ra l  
flux i n i o ~ m a t i o n  based upon actual  measurements .  

Conversion of the MODEL-produced s p e c t r a l  
fIux to equivalent IMEV elect rons  has  been ac- 
complished by applicdtio f fo rmulas  derived f rom 
the curves  of Rasmussen  193, These  fo rmulas  have 
been compiled in computer  codes which add the 
MODEL-produced flux value with a n  appropr ia te  
weight fo r  each R, A point of the  field. 

F o r  protons the lower energy cut-off i s  de ter -  
mined by t h e  thickness of the covers l ide  which 
shie lds  the s o l a r  cells .  The relat ionship between 
shield thickness and low energy cut-off. based upon 
the data  of Rasmussen,  i s  

Ec = 1. 53 (6 ) '  66 [ M E V ]  (67) 

where L is the shield thickness in mils.  F o r  a 
shield thickness of 6 mi l s  this  formula  yields a low 
ene r sy  cut-off of approximately 5 MEV. 

The proton'model is approximately independent 
of shield thickness once the proton energy i s  suf- 
f icient  t o  penet ra te  the shield,  thus the  fo rmula  fo r  

-, converting protons into equivalent LMEV elect rons  
uses  onlv a minimum energy shield re la ted  func- 
tion. Above the energy of cut- off(5 MEV) the proton 

conversion formula  was der ived by l inea r  f i t t ing  of 
Rasmussen 's  curves.  The r e su l t ing  function i s  

2200 11 < E  < 4 6  MEV 

The equation f o r  converting e l ec t ron  flux t o  
equivalent IMEV elect rons  was a l s o  der ived f r o m  
the cu rves  of Rasmussen.  A functional f o r m  was  
assumed as follows: 

where  E i s  energy in MEV. Both g and h w e r e  
then expanded in a power s e r i e s  and h was  f i t  t o  
speci f ic  cu rves  f o r  se lec ted  L values by r e g r e s s i b n  
analysis.  Then the coefficients g ( 6 )  w e r e  fit. The 
r e su l t ing  function i s  

4 

f e  = ~ X P ~ [ ( A ~ + B ~ . ( C ) ) E ~ ]  (70) 

i=  0 

with constants Ai and Bi  as follows. 

Thus a11 e lec t ron fluxes produced by the MODEL 
code were  passed through the  above equation t o  
produce equivalent IMEV elect rons ,  and these  
w e r e  summed over a l l  energy interods to yield the  
to ta l  equivalent IMEV elect ron flux at each  point 
R, A. 

The power loss  model i s  given by the  function 

where  N i s  the cumulative IMEV elect ron flux f r o m  
Equation (65). This function is a l eas t  s a u a r e s  f i t  
t0.a model of degra6ation vs. f luence givkn by Luft 
and ~ a u s c b e n b a c k ( ~ ~ !  D(N) i s  a degradation fac tor  
whose value ranges  f rom 1 to 0 over  the f luence 
r ange  1 to -. Actual power to the t h r u s t e r s  will be  
a function of tine initial power output before  part i-  
culate damage,  c:istance to the s u n  which a f fec t s  
thc amount of energy fall ing on the ce l l s  and other  
effects.  F o r  our  model we a s s u m e  that power t o  
the th rus t e r s  i s  given by 

where  RS is the d is tance  to the  sun, Ph is a 
s m a l l  hohsekeeping power, and ??is an  exponent. 



For  the evaluation in the trajectory optiqiza- 
tion program of the analytic expressions for  N 
given in Equation (65) the transformation between 
the equinoctial coordinate f rame and geomagnetic 

\- 
coordinates must be used. Equations (65) and (72) 
a r e  essentially those re fe r red  to in Equation (55) .  

Numerical Results 

A number of cases  have been run using the 
current  version of the c o m ~ u t e r  code which ~ ~~ ~ - ~ 

assumes constant thrust acceleration. In this 
section, resul ts  for a typical mission which 
involvcs a transfcr f rom a low eccentric inclined 
orbit  to circular geosynchronous orbit  will be 
given. Three cases  were run fo r  this transfer;  
Case I assumes no oblateness o r  shadowing, 
Case I1 assumes oblateness but no shadowing and 
Case 111 assumes both oblateness and shadowing 
effects a r e  included. 

The initial orbit  has a semi-major  axis of 
10509 km, an eccentricity o f .  325, an inclination 
of 28.5' with longitude of azcending node and 
argument of perigee both 0 . The final orbit  has 
a semi-major  axis of 42241.19 km with ze ro  
ecc ntricity and inclilfation. acceleration of z 10- g's (9.798 x 10- kmlsec  ) 1s assumed and 
the t ransfer  begins on Julian Day ,2444239.0 
(Jan. 0, 1980). 

The thrust  direction for particular orbits is 
of interest. In Figures  2-4 a r e  plotted the orbit  
and the planar component of the unit vector indi- 
cating thrust  acceleration direction for th ree  
particular orbits of the Case IIJ trajectory, 
namely, the initial orbit, an intermediate orbit. 

'J and the final orbit. The intermediate orbit 
corresponds to a t ime 31. 7 days into the t ransfer  
and the equinoctial orbital  elements yield an 
inclination of 16.7' and an eccentricity of .287. 

The components of the s ta te  and the cos ta teare  
plotted in Figures  5-9 in equinoctial coordinates 
fo r  the th ree  cases.  The AV i s  equal t o  the 
thrust acceleration magnitude t imes the t ime 
during which acceleration is on (it i s  off only in 
Case 111 duriag the portion of the orbit  which i s  
in shadow). Fo r  Case I, the AV is 4.30 kmlsec, 
for Case I1 it  i s  4.33 kmlsec, and for Case  111 
it is 4.41 kmlsec. As  would be expected with 
the oblateness effect included, AV is increased ' 
slightly. When the shadow effect i s  a lso included. 
total transfer t ime is increased by about 12% but 
hV i s  increased only slightly f o r  this mission. 

The program is written in FORTRAN IV and 
these runs were done on an IBM 360175 computer 
using the G compiler. A ]&point quadrature was 
used with time s teps  fo r  the differential equation 
solution of a b o ~ t  three days (for some s teps  this 
was halved). As an example, Case I converged 
in 14 iterations with 28 trajectory calls, the 
total program running in 2.6 minutes. With 
oblateness included, run time for  a single trajec- 
tory increases about 5%. with shadowin&run t ime 
fo r  a single trajectory is up another 35%. These 
figures a r e  meant to give only a very rough idea 
of the performance of the program. A certain 
amount of coding optimization must yet be done; 
the I1 compiler would reduce run t h e ;  and a more 
thorough study of the relation between accuracy 
and time s tep and quadrature formula must be 

performed. Including the p ~ w e r ' d e ~ r a d a t i o n  
effect will increase run  time. 

Conclusions 

In this paper, we discussed the current  s tage  
of development of a low thrust optimal satelli te 
ra is ing program. Through the use of equinoctial 
orbital  elements. classical singularities a r e  eli- 
minated. The method of averaging allows quicker 
trajectory evaluation than a full numerical inte- 
gration. The analytic model f o r  the effect of 
so la r  cel l  degradation on power also contributes 
to rapid calculation of the optimal trajectory and 
is consistent with the other approximations (such 
a s  averaging, gravity harmonic t e r m s  limited t o  
J2. and cylindrical shadow assumptions). A 
more  detailed study of run t ime and relative accu- 
rac ies  using different quadrature formulas and 
t ime  s teps  in the differential equation evaluation 
will be made when the degradation model has been 
integrated with the optimal trajectory program. 
The simplified problem program has already 
yielded some interesting resul ts  for  selected 
missions. 
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Table 1. Elements of M 
V 

Table 2. Partials of XI and Y1 with Respect 
to h and k 

3 kB cosF- 1 t hkg (hcosF- ksinF) 

ah -i=T I 
3 - hkg (hcosF-ksinF) 

ak TF 

2 3 
aY1 = a -kgsinF+(wk B ) (hcosF-ksinF) 

1 
xi- ' L- -m- I 

Table 3. Partial of M with Respect to a 



Table 4. Partial of M with Respectto h 

aM22 -hMZ2 j- - + -  "1 s i n - h  - -- 1 (B+h2~31] - =  - +  
ah 1- h2- k2 na2 ahak ah 

.n n TF 



Table 5. Partial of M with Respect to k 

aM5 1 aM52 k"53 + -  M53 ax, ---- = 0, - = aM53 0. - 
ak ak ak 32 ak 



Table 6. Non-zero Partials of M with Respect Table 7. Non-zero Partials of M with Respect 
to P to q 

Table 8. Partials of X1 and Y1 with Respect to h and k 

3 + (hsinF + k cos 1 



Table 9. Second Partials of X1 and Y with Respect to h and k 1 

Table 10. The Shadow Quartic Equation 

2 
bl ' l -h  e 
b2 hkB 

2 b3 ' l-k 0 

dl a l-Xs 2 
d2 = 1-ys2 
d3 = 2YsXs 

hl = dl(b12-b22) +d2(b22-b32)-d3(blb2-b2b3) 

h2 a -2dlkbl-2d2hb2 +d3(kb2+hbl) 
a 2 

2 2 = al(b2+k2) +d2(b3 +h )-d3(b2b3+hk) - e 
h3 7 



Table 11. Partials of the Shadow Functioh 

Table 12. J2 Variation of Parameters Equations 

2 2 2 i z  3 u ~ ~ ' ~ ~ k  1-6(p +q  ) + 3(p +q ) 

h ~ 2  
Table 13. Partial of JZ Equations with Respect 

2 2 2  2 2 2  to a 
2na5(1-h -k ) ( l + p  +q ) 



Table 11. Partials of the Shadow Functioh 

Table 12. J2 Variation of Parameters Equations 

Table 13. Partial of J2 Equations with Respect 
to a 

ah 7 h 
ba r - 2 5  

ah I k 
b a  

* - _ _  
2 a 

a; 
3z 

7 b  
= - 7 ;  

7 i aq = - Z a  
ba 



Table 14. Partial of J2 Equations with Respect Table 15. Partial of J2  Equations 'with Respect 
to h to k 

Table 16. Partial of J2 Equations with Respect Table 17. Partial of J2 Equations with Respect 
to P to q 
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Figure 2. Orbital Plane Projection of Unit 
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Figure 3. Orbital Plane Projection of Unit 
Thrust Acceleration Vector f o r  
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Figure 4. Orbital Plane Projection of Unlt 
Thrust Acceleration Vector f o r  
Final Orbit  
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Figure  5. a ' a n d  X v e r s u s  T i m e  a 
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Figure  6. h and A h  v e r s u s  T i m e  
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F i g u r e  8. p and X v e r s u s  T ime  
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Figure  9. q and X v e r s u s  T i m e  
q 

'A 
The upper s e t  of t h r e e  cu rves  in the f i g w e  is  

the state,  the lower s e t  of th ree  cu rves  i s  the 
costate. Dotted l ine is  c a s e  with no oblateness 
o r  shadowing, Dashed l ine is c a s e  with 
ohlateness and solid l ine is  c a s e  with oblate- 
ness  and shadowing. 

* 
Figure  7. k and Xk v e r s u s  T i m e  
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