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OPTIMAL LOW THRUST GEOCENTRIC TRANSFER*

Theodore N, Edelbaum **, Lester L. Sackett? and Harvey L, Malchow .
' The Charles Stark Draper Laboratory, Inc,
Cambridge, Massachusetts

Abgtract

A computer code which will rapidly calculate
time- optimal low thrust transfers is being devel-
oped as a mission analysis tool. The final pro-
aram will apply to NEP or SEP missions and will
include a variety of environmental effects, The
current program assumes constant acceleration,
The oblateness effect and shadowing may be in-
cluded, Detailed state and costate equations are
given for the thrust effect, oblateness effect, and
shadowing, A simple but adequate model yields
analytical formulas for power degradation due to
the Van Allen radiation belta for SEP missions.
The program avoids the classical singularities by
the use of equinoctial orbital elements, Kryloff-
Bogoliuboff averaging is used to {acilitate rapid
calculation, Results for selected cases using the
current program are given.

Introduction

This paper discusses the current versgion of a
mission analysis computer program being devel-
oped for Goddard Space Flight Center, The pro-
gram rapidly calculates time-optimal low thrust
transfers between any two geocentric orbits in the
presence of a strong gravitational field, The final
program will encompass both nuclear or solar
electric powered transfer and will also congider
the effect of one high thrust impulse, Several en-
vironmental effects will be considered including
shadowing, oblateness, and the solar cell power
degradation due to the Van Allen radiation belis.

The code for the gimplified constant accelera-
tion problem hag been completed, This code in-
cludes the effects of earth oblateness and the shad-
ow effect, A subroutine calculates the times of
entrance and exit from earth's shadow for a given
orbit and the thrust i{s set to zero while the space-
craft is in shadow,

The application of optimal control theory
yields a two point boundary value problem which is
solved using a modified Newton-Raphson iteration,
The new code has two distinctions, The singulari-
ties that can occur when the eccentricity is zero
or the inclination is zero, and when classical or-
bital elements are used, are eliminated by the use
of equinoctial orbital e%eiments. {1} Kryloff-
Bogoliuboff averaging (2) is used to insure rapid
calculations of trajectories, Averaged orbital
elements yield a first approximation to the actual
elements, Five orbital elements vary slowly over
several orbits, and the sixth, corresponding to
position in an orbit, is eliminated by the averag-
ing, Averaging over a single orbit is performed
by quadrature, The differential equations for the
approximate state and costate are solved numeri-
cally using a time step equal to several orbital
revolutions,

Cefola (1) has derived the variation of param-
eter equations and the perturbation due to oblate-
ness in terms of equinoctial orbital elements, but
not the adjoint equations which are used here, The
method of averaging has been used extensively,
however, not for the present problem, Edelbaum
3, 4) has used averaging to calculate analytic solu-
tions for special cases of optimal low thrust tra-
jectories, and others have used averaging when
congidering effects guch as oblaterzess th;rd body
effects, and nonoptimal thrusting, (1» 9 ©

In summary, the current version of the code
calculates the constant acceleration low thrust time
optimal geocentric transfer between elliptical or-
bits and 1) includes the effects of oblateness and
shadowing, 2) avoids the classical singularitieg, 3)
is rapid due to averaging, and 4) is general, since
it caleulateg the optimal transfer between any
initial orbit and any final orbit or a subset of the
final orbital elements. Previous simulations have
not combined all these qualities.

In the following section, a brief summary of
Kryloff-Bogoliuboff averaging as applied to a tra-
jectory optimization problem is presented, In
succeeding sections a description of the equinoctial
orbital elements is given, followed by a descrip-
tion of the optimization problem that we are con-
sidering, The mathematical equations for a five
dimensional state consisting of the orbital ele-~
ments are presented, followed by the equations
needed to include the effects of shadowing and of
oblateness, The equations for a seven dimensional
state, including mass and accumnulated particle
flux {(of which power is a function) are also given,
Next is a description of the computer program at
its current stage of development, followed by a
discussion of the modeling of the effects of Van
Allen radiation on the power output of the solar
cells, TFinally some representative examples of
numerical results produced by the early version of
the computer code are presented,

A typical transfer is one starting in a low
altitude, eccentric, inclined orbit and ending at
circular geosynchronous orbit, The results show
trajectories and AV's for the examples of trans-
fers,

Averaging

A great savings in computer time can be
effected by considering a first approximation to
the state and costate, Short period variations in
the state and costate are eliminated by the averag-
ing technique, Let the state include five orbital
elements indicating the size, orientation and shape
of the orbit, but not the position of the spacecraft
in the orbit, Assume that these elements vary
slowly over one orbit, The state may also include
other quantities which vary slightly over one orbit,
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The averaged Hamiltonian can be defined asg

T
t+
= 2
H=l [ “ya
TtT
2

where H is the unaveraged Hamiltonian and T is
the orbital period. When calculating this integral
the state and costate are held fixed, The motion
of the spacecraft is assumed to vary in a manner
described by Kepler's equation over the averaging
integration, The first approximate state and co-
state satisfy the Euler- Lagrange equations

5
IT « - H {2)
A az

where the overbar indicates the approximate
quantities,

In some cases the averaging integral can be
solved analytically; otherwise a numerical quad-
rature formula may be used, The differential
equations can then be solved numerically uging a
time step which is much larger than but unrelated
to the number of orbital revolutions,

Equinoctial Orbital Elements

By using equinoctial orbital elements the
singularities that occur for zero eccentricity or
inclinations of zero or hinely degrees when using
classical orbital elements are avoided, (For in-
clinations near 180° retrograde equinoctial orbital
elements can be used, although we will not consid-
er that cage in thig paper.) The formulag given in
this section are taken from Cefola(l),

The direct equinoctial orbitalelements are de-
fined in terms of the classical orbital elements, a,
e, i, {I, and wby the formulas ‘

= g
= e sin(w+ )
e cos{w+ Q) . {3)
= tan(-iz) sinQl

ooTow P
u

= tan (—iz) cog {1

In Cefola 1) the sixth orbital element is the mean
longitude at epoch, In this paper we will consider
the eccentric longitude, F, as the sixth element,
defined by
F=E+ w+ Q (4)
where E is the eccentric anomaly, This element

will be eliminated from the dynamical equations by
the averaging process,

The equinoctial conrdinate frame is defined
, g2 W, which are given
below with respect to™an earth equatorial coordi-
nate frame,

, 1-p? + 2
Pe —L—— 2pq (5)
1+ p2+q?
2 -2p -
C 2pg ]
g = —— e |1+p2-q? GH
- 1+ pz + q2
L 2q .
- % -
\,‘v} =._...._.1— -2q (7)
- 1+p2+ q2
.1 - p2 - qz-

This coordinate frame is illustrated in Figure 1
where W iz normal to the orbital plane,

The gpacecraft position and velocity are
given by

r= X, f+v, ¢ 8
where

X, = a[ (1-b2p)cos F + hkpsinF - k | (10}

Y, = a[(1-k23)sinF + hkBcosF - ] (11)

. na2 2 .

X, = T[h.chosF - (1-h°p) sin¥F ] {12)

. 2

¥, -2 [(1-k2B) cosF - hkpsinF | (13)
e ! (14)

B = 1

1+41-h?- k2
n o= | B © o (15)
a3

.g = 1- kcosF - hsinF (18)
p is the earth gravitational constant, Kepler's
equation is given by

M+ w+(Q = F-ksginF+ hcosF 1n

The Optimization Problem

Let x represent the state (which for the NEP
case inclides the five orbital elements and for the
SEP case includes the five orbital elements, mass,
and accuraulated particle {lux, of which power is a
function) and \ the costate, Orbital transfer time
is to be minimized, The initial staie is assumed
to be specified and all or some combination of the
final orbit elements are specified,

The differential equation for the state can be



written ag

X=gx F, 0+alx 0Gyx, F, i (18)

where a( x, t} represents the magnitude of the
thrust acceleratton which can be written as a func-
tion of time in the NEP case or as a function of
mass and accumulated flux {or power) in the SEP
case; u is the thrust direction;

2

o

g.{x, F, 1) includes all other effects not depen-
d«]-én'{ on thrust direction such as oblateness and the
derivatives of mass and flux,

The Hamiltonian is given by
H=T% (20)

This is maximized by setting

Gy T(x, FIA
21)

A
u =

|G2T(l‘- FA |

The maximum value of H, denoted by H*, is then
given by
Lan)

AT g, + a0 (22)

The method of averaging may now bhe used to
determine the first order approximation to the
mean motion of the system. The averaged Hamil-
tonian, H, is defined by

p+ L

ffe 2 B (5, LI F) dt (23)

t-

ol =g —

where T is the pericd of the orbit and where the
five orbital elements, their adjoints, and any ex-
plicit time dependence not involving the motion of
the spacecraft in its orbit (indicated by T) are held
constant over the averaging interval, (For exam-
ple, in the five dimensional, NEP, constant thrust
case, the thrust acceleration, which is an explicit
function of time, is held constant over the interval, .

Also for the SEP case, the sun's direction, a func--

tion of time, is held congtant when calculating the
shadow location, ) Avergging with respect to the
eccentric longitude F, H is given by

T
A 1 R —
= f * (X, 2\_ )( ) (24)
-7
where
4t . T (1. T%cosF - TisinF) (25)
dar 27 '

]

obtained from Kepler's equation. Let
1 dt '

s(h,k, F) = = .= {28)

T aF

Then the Euler- Lagrange equations for this system
are

A T -
¥ -2 . [ 33 s(BEF) aF (27
SR A
=T 0 T Ts - < -
Pl B IZTz(z,A,f,F) (0 &, F)dF
°x  °x . (28)

Since we are minimizing time H{t)) must equal
one. Transversality conditions and conditions on
the final orbital elements yield five (or seven}
additional final conditions, The two point boundary
value problem can be solved uging a modified New-
ton- Raphson method by iterating on the initial co-
state and the final time, t., in order to meet the
final conditions, In our program the partial deri-
vatives of the final conditions with respect to the
initial costate are calculated numerically,

Note that the approximate thrust direction in
the equinoctial coordinate frame on a particular
orbit can be obtained by substituting the first ap-
proximate state and costate into Equation (21)

G, (%, F) X
S— (29)

ry
u =

leTE My

Equaticns for a Five Dimensional State

In this section the equations needed for the five
dimensional NEP case will be given. Only the
effect of thrusting will be considered, Many of
these equations will be applicable to the seven di-
mensgional SEP case which will be described later,
To avoid confusion with the seven dimensional
state, let z be the vector of the five orbital ele-
ments,

The unaveraged variation ¢f parameters
equation is given by

) MT(z, F
z = a{t) M(z, F)———n (30)

ez, P |
For constant acceleration
a{t) = ag (31)
and for constant thrust

) = . 2C 2
If the power decays expenentially
age” bt
= 33
= 1+ "0 @ Pt o2
be

Ly e
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Here o is the mass flow rate

m e -a (34)
b is defined by
P = -bP (35)

and ¢ is the jet velocity, The initial acceleration

ig defined by

2P0 :
ay *. - (36)
moc
and M is the 5 x 3 matrix
oz
M(z,F) = — (37)
=z o

The elements of this matrix are listed in Table 1,
In addition to the quantities defined in the section
on equinoctial orbital elements, the partials of X
and Y, with respect to h and k are reguired. Theée
are ligted in Table 2, These partials differ from
those in Cefola since we congider F as an orbital
element rather than as a function of h and k; thus
when partials are taken, F is held constanf, This
assumption also affects the appearance of the ex-
pressions given in Table 1 when compared with
Table 3 of Cefola,  However, if the expressions
are written out in detail they are seen to be
identical,

The averaged Hamiltonian is given by

w
~ T e o -
f,=a) [|M(Z,P3,| s(BEF) dF (38)
-

The Euler-Lagrange equations are then
. T MIE B} -
7 = alty f M(Z, F)———2 s{&,%, F)4F (39)

-7 iM" @, PR, |
and

n 3z -
5T .- f ZZT_;_.(E,Z,F)S(H,I{,F)
e ") =
(40)
+x T;250,%,F) ] F
it A ———
EZ

If Z, is the ith component of z, then
. — T —_
az 3M{Z,F) M (7, F)x
— = a(t)—2 i (41)
37, %z, [MTZ, F) X]

The partials of M with respect toa, h, k, p, and ¢
are given in Tables 3 - 7, , In addition the expres-
sions for the partials of X, and ¥, as well as the
second partials of Xy and Y, are néeded and g0 are
listed in Tables 8 and 9. Finally

-,
- g8inF
3 .1 - cos F (42)
3z 27 0
0

The integrals in Equations (39) and (40} can
be evaluated by a quadrature formula, We have
typically used a 18 point gaussian quadrature,

The Shadow Effect

For SEP missions, the thrusting will be shut
off while the spacecraft is in the earth's shadow,
The entry and exit angles are needed in order to
perform the averaging integral, In calculating °
these angles the following assumptions are made,
The shadow is cylindrical; the earth revolves
around the sun in an elliptical orbit; and over one
spacecraft revolution, the sun's direction is fixed,

State and Costate Equations

It is agsumed that immediately upen entrance
to the shadow, the thrust is turned off, and im-
mediately upon exit, it is turned on, The integrals
for the approximated state and costate, Equations
(39) and (40), must be altered appropriately.
Since the thrust acceleration is zero when the |

spacecraft is in shadow, Equation {32) becomes
L] F2

~ T, — - —_ —

# = [ awMTE Pils(BEF)dF (43)

Fy

where only the limits on the integral have been
changed. Fg corresponds to the entrance angle
and F4 to the exit angle, and we assume that Fo
>¥F, - F1 <180°, The state differential equa-
tion is then
Fy

Tcal) [ MEP

¥, |mT(z, FiX]

Mz, F)X

s{h,k, F}dF (44)

Since F, and . are functions of the orbital ele-
ments, by Leib}litz‘s rule,

~ F .
. 3H 2 T
P B et
3z - \7 3
Fl
+37; EE P\
I} (45)
9F [ ammTE,E) T
& |p ==
- 2
+25 1 ammTEF) T
dz - =
- Fl



The Shadow Equation

From geometrical considerations an equation
can be derived which the entry and exit angles
must salisfy, Such an equation is given in Esca-
ball?), and the equation given in this section is
essentially the same, except that it is given in
terms of equinoctial orbital elements,

The spacecraft position is given bjr

r= Xf+vy.@ (46)

where X, and Y, were given in Equations (10} and
(11}, Lelt the udit vector from the earth to the sun
be given by

B-s = X 1+ Ysg + zsﬁ {47)
This is in terms of the equinoctial coordinate
frame and thus depends on the equinoctial orbital
elements p and 9. If a, designates the earth's,
radins, the cosine of the angle betweenr and R is
given by .

1
ﬁs ..E (]£|2- aez)z
— X - (48)
R | iz [z
or, : 1
= 2 2,2
| X Xt Y, Y oz ~(r| a”) {49)
Squaring and rearranging
_ 2. 2 2., 2
S= (I-X’3 )Xl + (1-YS )Y1 - 2XsYsX1Y1
- ae-? a (50)

a

This is the shadow equation which must be satis-.
fied by the entry and exit angles, Xi and Y7 are
function® of cos T, sinF, a, h, and k (see Equa-
tions (10) and (11)), By further manipulations one
can derive a quartic equation in cos F, The coef-
ficients of this quartic equation are given in Table
10, Spurious roots can be eliminated by the cri-
teria that S = 0 and that R . r <0, In addition, for
the entry angle 3S/aF < ( and for the exit angle
3S/aF > 0, R

Derivatives of F and 8§

The derivative of F with reépect to z is need-
ed to evaluate the costate equation, It ¢an he ob-
tained implicitly from the shadow equation.

dF_ _ @S [2$ (51)
dz REZ [ OF
These partials are listed in Table 11, Note that

in calculating 35/3p and 35/39 we have taken into
account the fact that the sun's direction is glven
in equinoctial coordinates,

Oblateness

In previous sections we have considered only
perturbations to the inverse square motion caused
by thrusting, in this section the effect of oblate-
ness {Jo) is considered, This is an additive term
to the variation of parameters formulas such as in-
dicated by g{(x, ¥, t) in Equation (18), The single
averaged perturbing potential due to J3 has been
calculated in terms of equinoctial coordinates by
Cefolall) and is repeated here in Table 12, Reg is
the equatorial radius of the earth and Jg =, 0010827,
Thege formulas enter the averaged Hamiltonian as
coefficients of the costate (outside the integral
since the averaging effect has already been ac-
counted for).

If Z_ indicates the perturbation due to thrust
as given in Equation (38), then the Hamiltonian is
given by

ST T
H=1'2; *2z, (52)
The state equation is
:; = _E:Jz +§ {53)
The cosgtate equation is
=4 az
. 134 =)
ZT = . _z - . ZT _2
8z 3z
(54)
" 32
- ST eenTs, 2 L
- |7 2z BT

The partials indicated by a__éJz'l 32 in the above ex-
pression are given in Tables ™ 13-17.

Equations for a Seven Dimensional State

Up to this point we have assumed a five dimen-
sional state congisting of the five orbital elements
a, h, k, p, and q. Thrust was not a function of the
state (except in the case of shadowing when the en-
try and exit times were a function of the orbital
elements), For SEP missions the solar cell per-
formance will degrade in the presence of Van Allen
radiation, This will cause the amount of power de-
livered to the thrusters to decrease with time, The
power degradation can be modeled as a function of
the amount of equivalent electron flux intercepted
by the spacecraft solar cells, The accumulated
flux is dependent on the trajectory as well as time
(through the earth's rotation), The modelling of
the Van Allen radiation and its effect on the solar
cells is discussed in a later section, Power deliv-
ered to the thrugters ig also influenced by the vary
ing distance to the sun as a result of the ellipticity
of the earth's orbit, In this section, we will simp-
1y assume that we have analytic expressions given
for power ag a function of accumulated flux (and
time) and for the flux rate,

P = BN,
{55)

N = f(2,F,t)



F is assumed to be zerc when the spacecraft is in
ghadow,

For this study, it is assumed that thrust level
is proporticnal to input power, i,e, thrustis a
function only of beam current with specific im-
pulse and efficiency constant, Thrust acceleration

is given by
a = 2P (56)
me
and mass flow rate by
thoa - 2P (57)
2

Thus we can consider a seven dimensional state of
five orbital elements, mass, and accumulated
particle flux,

(58)

Z 8w

Since m and N are varying slowly the first approx-
imation of these quantities as well as the orbital
elements can be considered,

In the remainder of this section the gtate and
costate derivative equations will be given, Only
thrusting in an inverse square field wiil be con-
sidered, The oblateness effect could easily be in—
cluded as in the five dimensional case,

The averaged Hamiltonian (s given by

" Te,— - -
JZ x(%,F,t) s({h,k,F) dF

2P(R,T) [T

Fy R
f [ i % F)Azl, . ‘
1 me (59)
2P(N,T) s
_xm_cﬁ___ a(h, %, F) dF
f iz, F,T) s(h,k, F) dF
-
The approximate state must satisfy:
F
. = 2 M (z F),\ -
z = 2ZEM 1) M(zZ, F)——-—-—-———— s(5, %, F)IE
me  Fy Tz, FiR, )
. = T
Mo 220 L (80)
cl T
. id
N = [#z,F.7) s(B%F) dF,
-
where T; ig the time spent in sunlight, T is the

orbital period, F2 and Fj are the shadow entry

and exit angles respectively.

The approximate costate must satisfy

s(h,k, F) dF

These expressions can be simplified somewhat
using Equation (42} and by denoting

H, =

A, 2
= Ay
AN
where

o =

H, + H + Hg,

80 that

F
2
i S I A b T2% (3%, ¥,0 s(6,F, F)
- FOUT o=
+ . T3E FD + 3om, o) BEF) e
T ™ 5z
aF | = Te= - ey =
= [X, 2(Z Fyt) +X m]s(nE, Fy)
2 g,
dF | = T = - ey ==
Y [X, 2EFp, 00 + X 0] s(B%, F))
Fy
n (61)
- f iNﬂ (z, F,t) s(h, %, F)
- 3%
+ANN(z F, t)— (h,%, F)}
- - F2
Xy = Y [ MTE, P, s, F) aF
me F1
S SR T LT VPR S g 9
N 3N  me Ff =%z 1 "m 2
1

(62)



~ 2 o
H = f A,%(%,F,T) s(h,k, F} dF
F
1
T
~ = 2 L
Hm "‘lm—;-—-P(N,t)—T- (63)
~ — T, _
fiy =iy [ NEFDs0EF) oF
-
Then
F »
. 2 3z )
5,7 - [ L = s e m 2 lar
Fy oz 3z
T
[~ 0
s cost- cog Fy
= 2P(N,t) T . J
A "'T—' —_ -8inF, + 8inF,
moe 20 20 1
— 0 1 (64)
‘ " .
-dF ] - 3R
(Hz + Hm)s - f AN__:B
dz F az
- 1 -7 g
T 4 o8
+ AgN— } dF
Nz | ]
lm = Hz/m
X PN 5 4 H 1
Ay * - —==[H +H_ ] —
N 3N M p,t)

Note that 3z/2z was given by Equation (41) but with
alt) replaced by 2P(N)/mc and dF/dz by Equation
(51), -

Organization of the Computer Code

The computer program has an outer loop for
the solution of the two point boundary value prob-
lern, Estimates of the initial costate and final
time are read in. A modified Newton-Raphsaon
method is used to iterate on the final conditions,
Individual trajectories are evaluated by calling a
prediction- corrector differential equation solving
subroutine, The differential equation routine calls
the function evaluation subroutine which in turn
calls a quadrature subroutine to evaluate the
quantities which must be numenrically averaged
{such as thrusgt effect)., The function routine also
calls other subroutines to find the shadow entry
and exit angles and to evaluate analytically aver-
aged functions (such as due to oblateness), The
final converged values for initial costate and final
time are printed and the time history of the ex-
tremal trajectory is also printed,

Various two point boundary valué problem
iterator routines, differential equation solution
subroutines, or quadrature subroutines may be
used. In the program's current stage of develop-
ment constant acceleration is assumed, Oblate-
negs and shadowing may be included. Final condi-
tion options include all five orbital elements speci-
fied or a, e, and i specified and 0 and wiree,
Either a 4, 8, 16, or 32 point gaussian quadrature
subroutine may be used. Some examples of results
uging this prograrm are given in a later section,

Solar Cell Degradation Model

Part of the low-thrust geocentric transfer
problem involves a consideration of the effects of
particulate radiation in the Van Allen belts, The
radiation belts have a well-defined spatial strue-
ture, and hence SEP missions must congider the
position-dependent degradation of solar cells as an
important element in orbit shaping.

For use with the optimization code it was re-
quired to construct a sclar cell degradation model
that was compatible with the overall analytical
framework of the orbit-raising problem, To satis-
fy thig requirement the model was made analytical,
that is, defined by analytic functions on the entire
space of the related variables. This approach also
yields a model whose run time is reasonable in re-
lation to the other problems being solved,

In this section are given the analytic expres-
sicns for the spatially dependent damaging particle
flux, n(r(t)), and for thruster power as a function
of the {otal degrading particle fluence, P{N) where
N = n®),

There are a number of alternate computational
appreoaches to the problem of cobtaining the gquanti-
ties n(r(t)) and P(N). The approach taken here ig
to conStruct a geometric space of equivalent tMEV
electron flux, Each geometric point in this space
is associated analytically with a flux value which
provides the required N value,

The model assumes n-on-p type gilicon cells
with 10 ohm-e¢m base resistivity, A cover shield
thickness of 6 mils is assumed with semi- infinite
back shielding,

The particle field is assumed to be,azimuth
independent, At a point R, ) in geomagnetic co-
ordinates, where R is radius expressed in earth
radii and ) is the geomagnetic latitude, the equiv-
alent IMEV electron flux is modeled by the func-
tion

9

B(R,A) = Agexp{) Af(R,2)] (65)
i=1

where the functions fi(R_,\) are given by

f1 = yew f4 = n-v f7 = Ju +w
= 2. = 3 2 = '250

fz nuFew f5 = My fB u w
= 2- . = 3 3 = ‘2-

f3 u“ewey fG uly fg u w

with



e

u=* I/R, v=sin), w= cos),

The constant coefficients A, are:

Ag= L1720 x 10° Ag= .905 x 10°
Ay = -.140 x 10 Ag = -.916 x 10
Ag = -.183 x 10 A= -.227 x 10
Ay = 206 x 102 Ag= 597 x 10*
Ag = -.425 x 104
and
A, = .222 x 10°

The analytical function N was derived by the
application of an IBM multivariate regression code
to a sample of the field data points. The resulting
function has continuous partial derivatives in R and
) and exhibits the proper monotonicity in the outer
parts of the field, The R coordinate is sampled at
1R intervals from 1, 2R¢ out to the last increment
which yields a flux greater than 105 1MEV elec-
trons/em? sec, Also the field is sampled at Rg =
1. 0166 (=~ 100 km altitude) to better define the low
altitude orbit field, Angular sample points are
chosen at 10° intervals from 0° to §0°,

To calculate the particle energy spectrum the
R, ) sample points have been transformed into
magnetic coordinates B {field strength} and L (in-
tegral invariant) by use of the magnetic dipole
transformation:

L = R/c052 b

(68)

1/2

B (30/R3)(1 + 3gin® 3)

These cogrdinates were then used as inputs to the
MODEL(8) computer code which provides spectral
flux information based upon actual measurements,

Conversion of the MODEL-produced gpectral
flux to equivalent 1IMEYV electrons has been ac-
complished by applica{tiorz ?f foermulas derived from
the curves of Rasmussen'9), Thesge formulas have
been compiled in computer codes which add the
MODEL-produced flux value with an appropriate
weight for each R, ) point of the field.

For protons the lower energy cut-off is deter-
mined by the thickness of the coverslide which
shields the solar cells, The relationship between
shield thickness and low energy cut-off, based upon
the data of Rasmussen, is
0,66

E =

c (87)

1.53 () [ MEV ]
where L is the shield thickness in mils, For a
shield thickness of 8 mils this formula yields a low

energy cut- off of approximately 5 MEV,

The proton model is approximately independent
of shield thickness once the proton energy g guf-
ficient to penetrate the shield, thus the formula for
converting protons into equivalent IMEV electrons
uses only a minimum energy shield related func-
tion, Abovethe energy of cut- off (5 MEV) the proton

conversion formula was derived by linear fitting of
Rasmusgen's curves, The resulting function is

10

2200 11 <E <46 MEV

1071110810 E+ 5,26 46<E MEV

The equation for converting electron flux to
equivalent IMEV electrons was also derived from
the curves of Rasmussen, A functional form was
assumed as follows:

f = explg{L) h(E)) {69)
where E is energy in MEV, Both g and h were
then expanded in a power series and h was fit to
specific curves for selected 4 values by regression

analysis, Then the coefficients g(4) were fit, The
resulting function is
4
t, = exp) [(a + B + @) E!] (70)
e 1 i
i=0

with constants A..l and Bi as follows,

i Ai B1

4 -5,212 -0,1845

1 6.287 0.1275

2 ~-2,233 -0.03198

3 0. 3489 0.005410
4 -0,01954 -0, 0002690

Thus all electron fluxes produced by the MODEL
code were passed through the above equation to
produce equivalent 1IMEV electrons, and these
were summed over all energy interods to yield the
total equivalent 1IMEV electron flux at each point
R, A.

The powerleoss model is given by the function

DAV = exp[- (. 4364 x 10" P)tog, (N!0 ], N2 1
(71)

"where N is the cumulative 1MEV electron flux from

Equation (65), This function is a least squares fit
to a model of degradation vs. fluence given by Luft
and Rauschenback(10) D(N) is a degradation factor
whose value ranges from 1 to 0 over the fluence
range 1 to =, Actual power to the thrusters will be
a function of the initial power output before parti-
culate damage, distance to the sun which affects
the amount of energy falling on the cells and other
effects, TFor our model we assume that power to
the thrusters is given by

(72}

R () \ "

PN, t) = D(X) (P(1,tg) +Py ) - Py
R, (ty)

where R_ is the distance to the sun, P, is a

small hdusekeeping power, and 7is an exponent,
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-in shadow),

For the evaluation in the trajectory optimiza-
tion program of the analytic expressions for N
given in Equation (65) the transformation between
the equincctial coordinate frame and geomagnetic
coordinates must be used, Equaticns (65) and (72}
are essentially those referred to in Equation (55),

Numerical Results

A number of cases have been run using the
current version of the computer code which
assumes constant thrust acceleration, In this
section, results for a typical mission which
involves a transfer from a low eccentric inclined
orbit to circular geosynchronous orbit will be
given, Three cases were run for this transfer;
Case I agsumes no oblateness or shadowing,
Case 1I assumes oblateness but no shadowing and
Case III assumes both oblateness and shadowing
effects are included. ’

The initial orbit has a semi- major axis of
10509 km, an eccentricity of ,325, an inclination
of 28, 5° with longitude of agcending node and
argument of perigee both 0°, The final orbit has
a semi-major axis of 42241, 19 km with zero
eccgntric ity and incli&ation. Agn acceleration of
107% g's (9,798 x 10"~ km/sec”) is agsumed and
the transfer begins on Julian Day 2444238, 0
(Jan, 0, 1980).

The thrust direction for particular orbits is
of interest, In Figures 2-4 are plotted the orbit
and the planar component of the unit vector indi-
cating thrust acceleration direction for three
particular orbits of the Case TIT trajectory,
namely, the initial orbit, an intermediate orbit,
and the final orbit, The intermediate orbit
corregponds to a time 31, 7 days into the transfer
and the equinoctial orbital elements yield an
inclination of 18, 7° and an eccentricity of , 281,

The components of the state and the costate are
plotted in Figures 5-9 in equinoctial coordinates
for the three cases. The AV is equal to the
thrust acceleration magnitude times the time
during which acceleration is on (it ig off only in
Case III during the portion of the orbit which is
For Case 1, the AV is 4,30 km/sec,
for Case II it is 4, 33 km/sec, and for Case NI
it is 4.41 km/sec, As would be expected with
the oblateness effect included, AV is increased -
slightly, When the shadow effect is also included,

total transfer time is increased by about 12% but . '

AV is increased only slightly for this mission,

The program is written in FORTRAN IV and
thege runs were done on an IBM 360/75 computer
using the G compiler. A 16-point quadrature was
used with time steps for the differential equation
soluticn of about three days (for some steps this
was halved), As an example, Case [ converged
in 14 iterations with 28 trajectory calls, the
total program running in 2, 6 minutes, With
oblateness included, run time for a single trajec-
tory increases about 5%, with shadowing, run time
for a single trajectory is up ancther 35%, These
figures are meant to give only a2 very rough idea
of the performance of the program, A certain
amount of coding optimization must yvet be done;
the I compiler would reduce run time; and a more
thorough study of the relation between accuracy
and time step and qgadrature formula must be

performed. Including the power.r‘iegradatlon
effect will increase run time,

Conclusions

In this paper, we discussed the current stage
of development of a low thrust optimal satellite
raising program, Through the use of equinoctial
orbital elements, classical singularities are eli-
minated, The method of averaging allows quicker
trajectory evaluation than a full numerical inte-
gration, The analytic model for the effect of
solar cell degradation on pawer also contributes
to rapid calculation of the optimal irajectory and
is consistent with the other approximations {such
as averaging, gravity harmonic terms limited to
J2, and cylindrical shadow assumptions}), A
more detailed study of run time and relative accu-
racies using different quadrature formulas and
time steps in the differential equation evaluation
will be made when the degradation model has been
integrated with the optimal trajectory program,
The simplified problem program has already
yielded some interesting results for selected
missions.
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