DSSTBatchLSModel.java
/* Copyright 2002-2019 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.estimation.leastsquares;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.IdentityHashMap;
import java.util.List;
import java.util.Map;
import org.hipparchus.linear.Array2DRowRealMatrix;
import org.hipparchus.linear.ArrayRealVector;
import org.hipparchus.linear.MatrixUtils;
import org.hipparchus.linear.RealMatrix;
import org.hipparchus.linear.RealVector;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.Incrementor;
import org.hipparchus.util.Pair;
import org.orekit.estimation.measurements.EstimatedMeasurement;
import org.orekit.estimation.measurements.ObservedMeasurement;
import org.orekit.orbits.Orbit;
import org.orekit.propagation.PropagationType;
import org.orekit.propagation.Propagator;
import org.orekit.propagation.PropagatorsParallelizer;
import org.orekit.propagation.SpacecraftState;
import org.orekit.propagation.conversion.IntegratedPropagatorBuilder;
import org.orekit.propagation.sampling.MultiSatStepHandler;
import org.orekit.propagation.semianalytical.dsst.DSSTJacobiansMapper;
import org.orekit.propagation.semianalytical.dsst.DSSTPartialDerivativesEquations;
import org.orekit.propagation.semianalytical.dsst.DSSTPropagator;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.ChronologicalComparator;
import org.orekit.utils.ParameterDriver;
import org.orekit.utils.ParameterDriversList;
import org.orekit.utils.ParameterDriversList.DelegatingDriver;
/** Bridge between {@link ObservedMeasurement measurements} and {@link
* org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem
* least squares problems}.
* <p>
* This class is an adaption of the {@link BatchLSModel} class
* but for the {@link DSSTPropagator DSST propagator}.
* </p>
* @author Luc Maisonobe
* @author Bryan Cazabonne
* @since 10.0
*
*/
public class DSSTBatchLSModel implements BatchLSODModel {
/** Builders for propagators. */
private final IntegratedPropagatorBuilder[] builders;
/** Array of each builder's selected propagation drivers. */
private final ParameterDriversList[] estimatedPropagationParameters;
/** Estimated measurements parameters. */
private final ParameterDriversList estimatedMeasurementsParameters;
/** Measurements. */
private final List<ObservedMeasurement<?>> measurements;
/** Start columns for each estimated orbit. */
private final int[] orbitsStartColumns;
/** End columns for each estimated orbit. */
private final int[] orbitsEndColumns;
/** Map for propagation parameters columns. */
private final Map<String, Integer> propagationParameterColumns;
/** Map for measurements parameters columns. */
private final Map<String, Integer> measurementParameterColumns;
/** Last evaluations. */
private final Map<ObservedMeasurement<?>, EstimatedMeasurement<?>> evaluations;
/** Observer to be notified at orbit changes. */
private final ModelObserver observer;
/** Counter for the evaluations. */
private Incrementor evaluationsCounter;
/** Counter for the iterations. */
private Incrementor iterationsCounter;
/** Date of the first enabled measurement. */
private AbsoluteDate firstDate;
/** Date of the last enabled measurement. */
private AbsoluteDate lastDate;
/** Boolean indicating if the propagation will go forward or backward. */
private final boolean forwardPropagation;
/** Mappers for Jacobians. */
private DSSTJacobiansMapper[] mappers;
/** Model function value. */
private RealVector value;
/** Model function Jacobian. */
private RealMatrix jacobian;
/** Type of the orbit used for the propagation.*/
private PropagationType propagationType;
/** Type of the elements used to define the orbital state.*/
private PropagationType stateType;
/** Simple constructor.
* @param propagatorBuilders builders to use for propagation
* @param measurements measurements
* @param estimatedMeasurementsParameters estimated measurements parameters
* @param observer observer to be notified at model calls
* @param propagationType type of the orbit used for the propagation (mean or osculating)
* @param stateType type of the elements used to define the orbital state (mean or osculating)
*/
public DSSTBatchLSModel(final IntegratedPropagatorBuilder[] propagatorBuilders,
final List<ObservedMeasurement<?>> measurements,
final ParameterDriversList estimatedMeasurementsParameters,
final ModelObserver observer,
final PropagationType propagationType,
final PropagationType stateType) {
this.builders = propagatorBuilders.clone();
this.measurements = measurements;
this.estimatedMeasurementsParameters = estimatedMeasurementsParameters;
this.measurementParameterColumns = new HashMap<>(estimatedMeasurementsParameters.getDrivers().size());
this.estimatedPropagationParameters = new ParameterDriversList[builders.length];
this.evaluations = new IdentityHashMap<>(measurements.size());
this.observer = observer;
this.mappers = new DSSTJacobiansMapper[builders.length];
this.propagationType = propagationType;
this.stateType = stateType;
// allocate vector and matrix
int rows = 0;
for (final ObservedMeasurement<?> measurement : measurements) {
rows += measurement.getDimension();
}
this.orbitsStartColumns = new int[builders.length];
this.orbitsEndColumns = new int[builders.length];
int columns = 0;
for (int i = 0; i < builders.length; ++i) {
this.orbitsStartColumns[i] = columns;
for (final ParameterDriver driver : builders[i].getOrbitalParametersDrivers().getDrivers()) {
if (driver.isSelected()) {
++columns;
}
}
this.orbitsEndColumns[i] = columns;
}
// Gather all the propagation drivers names in a list
final List<String> estimatedPropagationParametersNames = new ArrayList<>();
for (int i = 0; i < builders.length; ++i) {
// The index i in array estimatedPropagationParameters (attribute of the class) is populated
// when the first call to getSelectedPropagationDriversForBuilder(i) is made
for (final DelegatingDriver delegating : getSelectedPropagationDriversForBuilder(i).getDrivers()) {
final String driverName = delegating.getName();
// Add the driver name if it has not been added yet
if (!estimatedPropagationParametersNames.contains(driverName)) {
estimatedPropagationParametersNames.add(driverName);
}
}
}
// Populate the map of propagation drivers' columns and update the total number of columns
propagationParameterColumns = new HashMap<>(estimatedPropagationParametersNames.size());
for (final String driverName : estimatedPropagationParametersNames) {
propagationParameterColumns.put(driverName, columns);
++columns;
}
// Populate the map of measurement drivers' columns and update the total number of columns
for (final ParameterDriver parameter : estimatedMeasurementsParameters.getDrivers()) {
measurementParameterColumns.put(parameter.getName(), columns);
++columns;
}
// Initialize point and value
value = new ArrayRealVector(rows);
jacobian = MatrixUtils.createRealMatrix(rows, columns);
// Decide whether the propagation will be done forward or backward.
// Minimize the duration between first measurement treated and orbit determination date
// Propagator builder number 0 holds the reference date for orbit determination
final AbsoluteDate refDate = builders[0].getInitialOrbitDate();
// Sort the measurement list chronologically
measurements.sort(new ChronologicalComparator());
firstDate = measurements.get(0).getDate();
lastDate = measurements.get(measurements.size() - 1).getDate();
// Decide the direction of propagation
if (FastMath.abs(refDate.durationFrom(firstDate)) <= FastMath.abs(refDate.durationFrom(lastDate))) {
// Propagate forward from firstDate
forwardPropagation = true;
} else {
// Propagate backward from lastDate
forwardPropagation = false;
}
}
/** {@inheritDoc} */
public void setEvaluationsCounter(final Incrementor evaluationsCounter) {
this.evaluationsCounter = evaluationsCounter;
}
/** {@inheritDoc} */
public void setIterationsCounter(final Incrementor iterationsCounter) {
this.iterationsCounter = iterationsCounter;
}
/** {@inheritDoc} */
public boolean isForwardPropagation() {
return forwardPropagation;
}
/** {@inheritDoc} */
@Override
public Pair<RealVector, RealMatrix> value(final RealVector point) {
// Set up the propagators parallelizer
final DSSTPropagator[] propagators = createPropagators(point);
final Orbit[] orbits = new Orbit[propagators.length];
for (int i = 0; i < propagators.length; ++i) {
mappers[i] = configureDerivatives(propagators[i]);
orbits[i] = propagators[i].getInitialState().getOrbit();
}
final PropagatorsParallelizer parallelizer =
new PropagatorsParallelizer(Arrays.asList(propagators), configureMeasurements(point));
// Reset value and Jacobian
evaluations.clear();
value.set(0.0);
for (int i = 0; i < jacobian.getRowDimension(); ++i) {
for (int j = 0; j < jacobian.getColumnDimension(); ++j) {
jacobian.setEntry(i, j, 0.0);
}
}
// Run the propagation, gathering residuals on the fly
if (forwardPropagation) {
// Propagate forward from firstDate
parallelizer.propagate(firstDate.shiftedBy(-1.0), lastDate.shiftedBy(+1.0));
} else {
// Propagate backward from lastDate
parallelizer.propagate(lastDate.shiftedBy(+1.0), firstDate.shiftedBy(-1.0));
}
observer.modelCalled(orbits, evaluations);
return new Pair<RealVector, RealMatrix>(value, jacobian);
}
/** {@inheritDoc} */
public int getIterationsCount() {
return iterationsCounter.getCount();
}
/** {@inheritDoc} */
public int getEvaluationsCount() {
return evaluationsCounter.getCount();
}
/** {@inheritDoc} */
public ParameterDriversList getSelectedPropagationDriversForBuilder(final int iBuilder) {
// Lazy evaluation, create the list only if it hasn't been created yet
if (estimatedPropagationParameters[iBuilder] == null) {
// Gather the drivers
final ParameterDriversList selectedPropagationDrivers = new ParameterDriversList();
for (final DelegatingDriver delegating : builders[iBuilder].getPropagationParametersDrivers().getDrivers()) {
if (delegating.isSelected()) {
for (final ParameterDriver driver : delegating.getRawDrivers()) {
selectedPropagationDrivers.add(driver);
}
}
}
// List of propagation drivers are sorted in the BatchLSEstimator class.
// Hence we need to sort this list so the parameters' indexes match
selectedPropagationDrivers.sort();
// Add the list of selected propagation drivers to the array
estimatedPropagationParameters[iBuilder] = selectedPropagationDrivers;
}
return estimatedPropagationParameters[iBuilder];
}
/** {@inheritDoc} */
public DSSTPropagator[] createPropagators(final RealVector point) {
final DSSTPropagator[] propagators = new DSSTPropagator[builders.length];
// Set up the propagators
for (int i = 0; i < builders.length; ++i) {
// Get the number of selected orbital drivers in the builder
final int nbOrb = orbitsEndColumns[i] - orbitsStartColumns[i];
// Get the list of selected propagation drivers in the builder and its size
final ParameterDriversList selectedPropagationDrivers = getSelectedPropagationDriversForBuilder(i);
final int nbParams = selectedPropagationDrivers.getNbParams();
// Init the array of normalized parameters for the builder
final double[] propagatorArray = new double[nbOrb + nbParams];
// Add the orbital drivers normalized values
for (int j = 0; j < nbOrb; ++j) {
propagatorArray[j] = point.getEntry(orbitsStartColumns[i] + j);
}
// Add the propagation drivers normalized values
for (int j = 0; j < nbParams; ++j) {
propagatorArray[nbOrb + j] =
point.getEntry(propagationParameterColumns.get(selectedPropagationDrivers.getDrivers().get(j).getName()));
}
// Build the propagator
propagators[i] = (DSSTPropagator) builders[i].buildPropagator(propagatorArray);
}
return propagators;
}
/** Configure the multi-satellites handler to handle measurements.
* @param point evaluation point
* @return multi-satellites handler to handle measurements
*/
private MultiSatStepHandler configureMeasurements(final RealVector point) {
// Set up the measurement parameters
int index = orbitsEndColumns[builders.length - 1] + propagationParameterColumns.size();
for (final ParameterDriver parameter : estimatedMeasurementsParameters.getDrivers()) {
parameter.setNormalizedValue(point.getEntry(index++));
}
// Set up measurements handler
final List<PreCompensation> precompensated = new ArrayList<>();
for (final ObservedMeasurement<?> measurement : measurements) {
if (measurement.isEnabled()) {
precompensated.add(new PreCompensation(measurement, evaluations.get(measurement)));
}
}
precompensated.sort(new ChronologicalComparator());
// Assign first and last date
firstDate = precompensated.get(0).getDate();
lastDate = precompensated.get(precompensated.size() - 1).getDate();
// Reverse the list in case of backward propagation
if (!forwardPropagation) {
Collections.reverse(precompensated);
}
return new MeasurementHandler(this, precompensated);
}
/** Configure the propagator to compute derivatives.
* @param propagators {@link Propagator} to configure
* @return mapper for this propagator
*/
private DSSTJacobiansMapper configureDerivatives(final DSSTPropagator propagators) {
final String equationName = DSSTBatchLSModel.class.getName() + "-derivatives";
final DSSTPartialDerivativesEquations partials = new DSSTPartialDerivativesEquations(equationName, propagators, propagationType);
// add the derivatives to the initial state
final SpacecraftState rawState = propagators.getInitialState();
final SpacecraftState stateWithDerivatives = partials.setInitialJacobians(rawState);
propagators.setInitialState(stateWithDerivatives, stateType);
return partials.getMapper();
}
/** {@inheritDoc} */
public void fetchEvaluatedMeasurement(final int index, final EstimatedMeasurement<?> evaluation) {
// States and observed measurement
final SpacecraftState[] evaluationStates = evaluation.getStates();
final ObservedMeasurement<?> observedMeasurement = evaluation.getObservedMeasurement();
// compute weighted residuals
evaluations.put(observedMeasurement, evaluation);
if (evaluation.getStatus() == EstimatedMeasurement.Status.REJECTED) {
return;
}
final double[] evaluated = evaluation.getEstimatedValue();
final double[] observed = observedMeasurement.getObservedValue();
final double[] sigma = observedMeasurement.getTheoreticalStandardDeviation();
final double[] weight = evaluation.getObservedMeasurement().getBaseWeight();
for (int i = 0; i < evaluated.length; ++i) {
value.setEntry(index + i, weight[i] * (evaluated[i] - observed[i]) / sigma[i]);
}
for (int k = 0; k < evaluationStates.length; ++k) {
final int p = observedMeasurement.getSatellites().get(k).getPropagatorIndex();
// partial derivatives of the current Cartesian coordinates with respect to current orbital state
final double[][] aCY = new double[6][6];
final Orbit currentOrbit = evaluationStates[k].getOrbit();
currentOrbit.getJacobianWrtParameters(builders[p].getPositionAngle(), aCY);
final RealMatrix dCdY = new Array2DRowRealMatrix(aCY, false);
// Jacobian of the measurement with respect to current orbital state
final RealMatrix dMdC = new Array2DRowRealMatrix(evaluation.getStateDerivatives(k), false);
final RealMatrix dMdY = dMdC.multiply(dCdY);
// short period derivatives
mappers[p].setShortPeriodJacobians(evaluationStates[k]);
// Jacobian of the measurement with respect to initial orbital state
final double[][] aYY0 = new double[6][6];
mappers[p].getStateJacobian(evaluationStates[k], aYY0);
final RealMatrix dYdY0 = new Array2DRowRealMatrix(aYY0, false);
final RealMatrix dMdY0 = dMdY.multiply(dYdY0);
for (int i = 0; i < dMdY0.getRowDimension(); ++i) {
int jOrb = orbitsStartColumns[p];
for (int j = 0; j < dMdY0.getColumnDimension(); ++j) {
final ParameterDriver driver = builders[p].getOrbitalParametersDrivers().getDrivers().get(j);
if (driver.isSelected()) {
jacobian.setEntry(index + i, jOrb++,
weight[i] * dMdY0.getEntry(i, j) / sigma[i] * driver.getScale());
}
}
}
// Jacobian of the measurement with respect to propagation parameters
final ParameterDriversList selectedPropagationDrivers = getSelectedPropagationDriversForBuilder(p);
final int nbParams = selectedPropagationDrivers.getNbParams();
if ( nbParams > 0) {
final double[][] aYPp = new double[6][nbParams];
mappers[p].getParametersJacobian(evaluationStates[k], aYPp);
final RealMatrix dYdPp = new Array2DRowRealMatrix(aYPp, false);
final RealMatrix dMdPp = dMdY.multiply(dYdPp);
for (int i = 0; i < dMdPp.getRowDimension(); ++i) {
for (int j = 0; j < nbParams; ++j) {
final ParameterDriver delegating = selectedPropagationDrivers.getDrivers().get(j);
jacobian.addToEntry(index + i, propagationParameterColumns.get(delegating.getName()),
weight[i] * dMdPp.getEntry(i, j) / sigma[i] * delegating.getScale());
}
}
}
}
// Jacobian of the measurement with respect to measurements parameters
for (final ParameterDriver driver : observedMeasurement.getParametersDrivers()) {
if (driver.isSelected()) {
final double[] aMPm = evaluation.getParameterDerivatives(driver);
for (int i = 0; i < aMPm.length; ++i) {
jacobian.setEntry(index + i, measurementParameterColumns.get(driver.getName()),
weight[i] * aMPm[i] / sigma[i] * driver.getScale());
}
}
}
}
}