IsotropicRadiationClassicalConvention.java
/* Copyright 2002-2019 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.forces.radiation;
import org.hipparchus.RealFieldElement;
import org.hipparchus.geometry.euclidean.threed.FieldRotation;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Rotation;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.util.FastMath;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitInternalError;
import org.orekit.frames.Frame;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.utils.ParameterDriver;
/** This class represents the features of a simplified spacecraft.
* <p>This model uses the classical thermo-optical coefficients
* Ca for absorption, Cs for specular reflection and Kd for diffuse
* reflection. The equation Ca + Cs + Cd = 1 always holds.
* </p>
* <p>
* A less standard set of coefficients α = Ca for absorption and
* τ = Cs/(1-Ca) for specular reflection is implemented in the sister
* class {@link IsotropicRadiationCNES95Convention}.
* </p>
*
* @see org.orekit.forces.BoxAndSolarArraySpacecraft
* @see org.orekit.forces.drag.IsotropicDrag
* @see IsotropicRadiationCNES95Convention
* @author Luc Maisonobe
* @since 7.1
*/
public class IsotropicRadiationClassicalConvention implements RadiationSensitive {
/** Parameters scaling factor.
* <p>
* We use a power of 2 to avoid numeric noise introduction
* in the multiplications/divisions sequences.
* </p>
*/
private final double SCALE = FastMath.scalb(1.0, -3);
/** Driver for absorption coefficient. */
private final ParameterDriver absorptionParameterDriver;
/** Driver for specular reflection coefficient. */
private final ParameterDriver reflectionParameterDriver;
/** Cross section (m²). */
private final double crossSection;
/** Simple constructor.
* @param crossSection Surface (m²)
* @param ca absorption coefficient Ca between 0.0 an 1.0
* @param cs specular reflection coefficient Cs between 0.0 an 1.0
*/
public IsotropicRadiationClassicalConvention(final double crossSection, final double ca, final double cs) {
try {
absorptionParameterDriver = new ParameterDriver(RadiationSensitive.ABSORPTION_COEFFICIENT,
ca, SCALE, 0.0, 1.0);
reflectionParameterDriver = new ParameterDriver(RadiationSensitive.REFLECTION_COEFFICIENT,
cs, SCALE, 0.0, 1.0);
} catch (OrekitException oe) {
// this should never occur as valueChanged above never throws an exception
throw new OrekitInternalError(oe);
}
this.crossSection = crossSection;
}
/** {@inheritDoc} */
@Override
public ParameterDriver[] getRadiationParametersDrivers() {
return new ParameterDriver[] {
absorptionParameterDriver, reflectionParameterDriver
};
}
/** {@inheritDoc} */
@Override
public Vector3D radiationPressureAcceleration(final AbsoluteDate date, final Frame frame, final Vector3D position,
final Rotation rotation, final double mass, final Vector3D flux,
final double[] parameters) {
final double ca = parameters[0];
final double cs = parameters[1];
final double kP = crossSection * (1 + 4 * (1.0 - ca - cs) / 9.0);
return new Vector3D(kP / mass, flux);
}
/** {@inheritDoc} */
@Override
public <T extends RealFieldElement<T>> FieldVector3D<T>
radiationPressureAcceleration(final FieldAbsoluteDate<T> date, final Frame frame,
final FieldVector3D<T> position,
final FieldRotation<T> rotation, final T mass,
final FieldVector3D<T> flux,
final T[] parameters) {
final T ca = parameters[0];
final T cs = parameters[1];
final T kP = ca.add(cs).negate().add(1).multiply(4.0 / 9.0).add(1).multiply(crossSection);
return new FieldVector3D<>(mass.reciprocal().multiply(kP), flux);
}
}