FieldTransform.java
- /* Copyright 2002-2019 CS Systèmes d'Information
- * Licensed to CS Systèmes d'Information (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.frames;
- import java.util.ArrayList;
- import java.util.Arrays;
- import java.util.Collection;
- import java.util.List;
- import java.util.stream.Stream;
- import org.hipparchus.Field;
- import org.hipparchus.RealFieldElement;
- import org.hipparchus.geometry.euclidean.threed.FieldLine;
- import org.hipparchus.geometry.euclidean.threed.FieldRotation;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.geometry.euclidean.threed.Line;
- import org.hipparchus.geometry.euclidean.threed.RotationConvention;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.FieldAbsoluteDate;
- import org.orekit.time.TimeShiftable;
- import org.orekit.time.TimeStamped;
- import org.orekit.utils.AngularDerivativesFilter;
- import org.orekit.utils.CartesianDerivativesFilter;
- import org.orekit.utils.FieldAngularCoordinates;
- import org.orekit.utils.FieldPVCoordinates;
- import org.orekit.utils.PVCoordinates;
- import org.orekit.utils.TimeStampedFieldAngularCoordinates;
- import org.orekit.utils.TimeStampedFieldPVCoordinates;
- import org.orekit.utils.TimeStampedPVCoordinates;
- /** Transformation class in three dimensional space.
- *
- * <p>This class represents the transformation engine between {@link Frame frames}.
- * It is used both to define the relationship between each frame and its
- * parent frame and to gather all individual transforms into one
- * operation when converting between frames far away from each other.</p>
- * <p>The convention used in OREKIT is vectorial transformation. It means
- * that a transformation is defined as a transform to apply to the
- * coordinates of a vector expressed in the old frame to obtain the
- * same vector expressed in the new frame.
- *
- * <p>Instances of this class are guaranteed to be immutable.</p>
- *
- * <h1> Examples </h1>
- *
- * <h2> Example of translation from R<sub>A</sub> to R<sub>B</sub> </h2>
- *
- * <p> We want to transform the {@link FieldPVCoordinates} PV<sub>A</sub> to
- * PV<sub>B</sub> with :
- * <p> PV<sub>A</sub> = ({1, 0, 0}, {2, 0, 0}, {3, 0, 0}); <br>
- * PV<sub>B</sub> = ({0, 0, 0}, {0, 0, 0}, {0, 0, 0});
- *
- * <p> The transform to apply then is defined as follows :
- *
- * <pre>
- * Vector3D translation = new Vector3D(-1, 0, 0);
- * Vector3D velocity = new Vector3D(-2, 0, 0);
- * Vector3D acceleration = new Vector3D(-3, 0, 0);
- *
- * Transform R1toR2 = new Transform(date, translation, velocity, acceleration);
- *
- * PVB = R1toR2.transformPVCoordinate(PVA);
- * </pre>
- *
- * <h2> Example of rotation from R<sub>A</sub> to R<sub>B</sub> </h2>
- * <p> We want to transform the {@link FieldPVCoordinates} PV<sub>A</sub> to
- * PV<sub>B</sub> with
- *
- * <p> PV<sub>A</sub> = ({1, 0, 0}, { 1, 0, 0}); <br>
- * PV<sub>B</sub> = ({0, 1, 0}, {-2, 1, 0});
- *
- * <p> The transform to apply then is defined as follows :
- *
- * <pre>
- * Rotation rotation = new Rotation(Vector3D.PLUS_K, FastMath.PI / 2);
- * Vector3D rotationRate = new Vector3D(0, 0, -2);
- *
- * Transform R1toR2 = new Transform(rotation, rotationRate);
- *
- * PVB = R1toR2.transformPVCoordinates(PVA);
- * </pre>
- *
- * @author Luc Maisonobe
- * @author Fabien Maussion
- * @param <T> the type of the field elements
- * @since 9.0
- */
- public class FieldTransform<T extends RealFieldElement<T>>
- implements TimeStamped, TimeShiftable<FieldTransform<T>> {
- /** Date of the transform. */
- private final FieldAbsoluteDate<T> date;
- /** Date of the transform. */
- private final AbsoluteDate aDate;
- /** Cartesian coordinates of the target frame with respect to the original frame. */
- private final FieldPVCoordinates<T> cartesian;
- /** Angular coordinates of the target frame with respect to the original frame. */
- private final FieldAngularCoordinates<T> angular;
- /** Build a transform from its primitive operations.
- * @param date date of the transform
- * @param aDate date of the transform
- * @param cartesian Cartesian coordinates of the target frame with respect to the original frame
- * @param angular angular coordinates of the target frame with respect to the original frame
- */
- private FieldTransform(final FieldAbsoluteDate<T> date, final AbsoluteDate aDate,
- final FieldPVCoordinates<T> cartesian,
- final FieldAngularCoordinates<T> angular) {
- this.date = date;
- this.aDate = aDate;
- this.cartesian = cartesian;
- this.angular = angular;
- }
- /** Build a transform from a regular transform.
- * @param field field of the elements
- * @param transform regular transform to convert
- */
- public FieldTransform(final Field<T> field, final Transform transform) {
- this(new FieldAbsoluteDate<>(field, transform.getDate()), transform.getDate(),
- new FieldPVCoordinates<>(field, transform.getCartesian()),
- new FieldAngularCoordinates<>(field, transform.getAngular()));
- }
- /** Build a translation transform.
- * @param date date of the transform
- * @param translation translation to apply (i.e. coordinates of
- * the transformed origin, or coordinates of the origin of the
- * old frame in the new frame)
- */
- public FieldTransform(final FieldAbsoluteDate<T> date, final FieldVector3D<T> translation) {
- this(date, date.toAbsoluteDate(),
- new FieldPVCoordinates<>(translation,
- FieldVector3D.getZero(date.getField()),
- FieldVector3D.getZero(date.getField())),
- FieldAngularCoordinates.getIdentity(date.getField()));
- }
- /** Build a rotation transform.
- * @param date date of the transform
- * @param rotation rotation to apply ( i.e. rotation to apply to the
- * coordinates of a vector expressed in the old frame to obtain the
- * same vector expressed in the new frame )
- */
- public FieldTransform(final FieldAbsoluteDate<T> date, final FieldRotation<T> rotation) {
- this(date, date.toAbsoluteDate(),
- FieldPVCoordinates.getZero(date.getField()),
- new FieldAngularCoordinates<>(rotation,
- FieldVector3D.getZero(date.getField()),
- FieldVector3D.getZero(date.getField())));
- }
- /** Build a translation transform, with its first time derivative.
- * @param date date of the transform
- * @param translation translation to apply (i.e. coordinates of
- * the transformed origin, or coordinates of the origin of the
- * old frame in the new frame)
- * @param velocity the velocity of the translation (i.e. origin
- * of the old frame velocity in the new frame)
- */
- public FieldTransform(final FieldAbsoluteDate<T> date,
- final FieldVector3D<T> translation,
- final FieldVector3D<T> velocity) {
- this(date,
- new FieldPVCoordinates<>(translation,
- velocity,
- FieldVector3D.getZero(date.getField())));
- }
- /** Build a translation transform, with its first and second time derivatives.
- * @param date date of the transform
- * @param translation translation to apply (i.e. coordinates of
- * the transformed origin, or coordinates of the origin of the
- * old frame in the new frame)
- * @param velocity the velocity of the translation (i.e. origin
- * of the old frame velocity in the new frame)
- * @param acceleration the acceleration of the translation (i.e. origin
- * of the old frame acceleration in the new frame)
- */
- public FieldTransform(final FieldAbsoluteDate<T> date, final FieldVector3D<T> translation,
- final FieldVector3D<T> velocity, final FieldVector3D<T> acceleration) {
- this(date,
- new FieldPVCoordinates<>(translation, velocity, acceleration));
- }
- /** Build a translation transform, with its first time derivative.
- * @param date date of the transform
- * @param cartesian Cartesian part of the transformation to apply (i.e. coordinates of
- * the transformed origin, or coordinates of the origin of the
- * old frame in the new frame, with their derivatives)
- */
- public FieldTransform(final FieldAbsoluteDate<T> date, final FieldPVCoordinates<T> cartesian) {
- this(date, date.toAbsoluteDate(),
- cartesian,
- FieldAngularCoordinates.getIdentity(date.getField()));
- }
- /** Build a rotation transform.
- * @param date date of the transform
- * @param rotation rotation to apply ( i.e. rotation to apply to the
- * coordinates of a vector expressed in the old frame to obtain the
- * same vector expressed in the new frame )
- * @param rotationRate the axis of the instant rotation
- * expressed in the new frame. (norm representing angular rate)
- */
- public FieldTransform(final FieldAbsoluteDate<T> date,
- final FieldRotation<T> rotation,
- final FieldVector3D<T> rotationRate) {
- this(date,
- new FieldAngularCoordinates<>(rotation,
- rotationRate,
- FieldVector3D.getZero(date.getField())));
- }
- /** Build a rotation transform.
- * @param date date of the transform
- * @param rotation rotation to apply ( i.e. rotation to apply to the
- * coordinates of a vector expressed in the old frame to obtain the
- * same vector expressed in the new frame )
- * @param rotationRate the axis of the instant rotation
- * @param rotationAcceleration the axis of the instant rotation
- * expressed in the new frame. (norm representing angular rate)
- */
- public FieldTransform(final FieldAbsoluteDate<T> date,
- final FieldRotation<T> rotation,
- final FieldVector3D<T> rotationRate,
- final FieldVector3D<T> rotationAcceleration) {
- this(date, new FieldAngularCoordinates<>(rotation, rotationRate, rotationAcceleration));
- }
- /** Build a rotation transform.
- * @param date date of the transform
- * @param angular angular part of the transformation to apply (i.e. rotation to
- * apply to the coordinates of a vector expressed in the old frame to obtain the
- * same vector expressed in the new frame, with its rotation rate)
- */
- public FieldTransform(final FieldAbsoluteDate<T> date, final FieldAngularCoordinates<T> angular) {
- this(date, date.toAbsoluteDate(),
- FieldPVCoordinates.getZero(date.getField()),
- angular);
- }
- /** Build a transform by combining two existing ones.
- * <p>
- * Note that the dates of the two existing transformed are <em>ignored</em>,
- * and the combined transform date is set to the date supplied in this constructor
- * without any attempt to shift the raw transforms. This is a design choice allowing
- * user full control of the combination.
- * </p>
- * @param date date of the transform
- * @param first first transform applied
- * @param second second transform applied
- */
- public FieldTransform(final FieldAbsoluteDate<T> date,
- final FieldTransform<T> first,
- final FieldTransform<T> second) {
- this(date, date.toAbsoluteDate(),
- new FieldPVCoordinates<>(compositeTranslation(first, second),
- compositeVelocity(first, second),
- compositeAcceleration(first, second)),
- new FieldAngularCoordinates<>(compositeRotation(first, second),
- compositeRotationRate(first, second),
- compositeRotationAcceleration(first, second)));
- }
- /** Get the identity transform.
- * @param field field for the components
- * @param <T> the type of the field elements
- * @return identity transform
- */
- public static <T extends RealFieldElement<T>> FieldTransform<T> getIdentity(final Field<T> field) {
- return new FieldIdentityTransform<>(field);
- }
- /** Compute a composite translation.
- * @param first first applied transform
- * @param second second applied transform
- * @param <T> the type of the field elements
- * @return translation part of the composite transform
- */
- private static <T extends RealFieldElement<T>> FieldVector3D<T> compositeTranslation(final FieldTransform<T> first, final FieldTransform<T> second) {
- final FieldVector3D<T> p1 = first.cartesian.getPosition();
- final FieldRotation<T> r1 = first.angular.getRotation();
- final FieldVector3D<T> p2 = second.cartesian.getPosition();
- return p1.add(r1.applyInverseTo(p2));
- }
- /** Compute a composite velocity.
- * @param first first applied transform
- * @param second second applied transform
- * @param <T> the type of the field elements
- * @return velocity part of the composite transform
- */
- private static <T extends RealFieldElement<T>> FieldVector3D<T> compositeVelocity(final FieldTransform<T> first, final FieldTransform<T> second) {
- final FieldVector3D<T> v1 = first.cartesian.getVelocity();
- final FieldRotation<T> r1 = first.angular.getRotation();
- final FieldVector3D<T> o1 = first.angular.getRotationRate();
- final FieldVector3D<T> p2 = second.cartesian.getPosition();
- final FieldVector3D<T> v2 = second.cartesian.getVelocity();
- final FieldVector3D<T> crossP = FieldVector3D.crossProduct(o1, p2);
- return v1.add(r1.applyInverseTo(v2.add(crossP)));
- }
- /** Compute a composite acceleration.
- * @param first first applied transform
- * @param second second applied transform
- * @param <T> the type of the field elements
- * @return acceleration part of the composite transform
- */
- private static <T extends RealFieldElement<T>> FieldVector3D<T> compositeAcceleration(final FieldTransform<T> first, final FieldTransform<T> second) {
- final FieldVector3D<T> a1 = first.cartesian.getAcceleration();
- final FieldRotation<T> r1 = first.angular.getRotation();
- final FieldVector3D<T> o1 = first.angular.getRotationRate();
- final FieldVector3D<T> oDot1 = first.angular.getRotationAcceleration();
- final FieldVector3D<T> p2 = second.cartesian.getPosition();
- final FieldVector3D<T> v2 = second.cartesian.getVelocity();
- final FieldVector3D<T> a2 = second.cartesian.getAcceleration();
- final FieldVector3D<T> crossCrossP = FieldVector3D.crossProduct(o1, FieldVector3D.crossProduct(o1, p2));
- final FieldVector3D<T> crossV = FieldVector3D.crossProduct(o1, v2);
- final FieldVector3D<T> crossDotP = FieldVector3D.crossProduct(oDot1, p2);
- return a1.add(r1.applyInverseTo(new FieldVector3D<>(1, a2, 2, crossV, 1, crossCrossP, 1, crossDotP)));
- }
- /** Compute a composite rotation.
- * @param first first applied transform
- * @param second second applied transform
- * @param <T> the type of the field elements
- * @return rotation part of the composite transform
- */
- private static <T extends RealFieldElement<T>> FieldRotation<T> compositeRotation(final FieldTransform<T> first, final FieldTransform<T> second) {
- final FieldRotation<T> r1 = first.angular.getRotation();
- final FieldRotation<T> r2 = second.angular.getRotation();
- return r1.compose(r2, RotationConvention.FRAME_TRANSFORM);
- }
- /** Compute a composite rotation rate.
- * @param first first applied transform
- * @param second second applied transform
- * @param <T> the type of the field elements
- * @return rotation rate part of the composite transform
- */
- private static <T extends RealFieldElement<T>> FieldVector3D<T> compositeRotationRate(final FieldTransform<T> first, final FieldTransform<T> second) {
- final FieldVector3D<T> o1 = first.angular.getRotationRate();
- final FieldRotation<T> r2 = second.angular.getRotation();
- final FieldVector3D<T> o2 = second.angular.getRotationRate();
- return o2.add(r2.applyTo(o1));
- }
- /** Compute a composite rotation acceleration.
- * @param first first applied transform
- * @param second second applied transform
- * @param <T> the type of the field elements
- * @return rotation acceleration part of the composite transform
- */
- private static <T extends RealFieldElement<T>> FieldVector3D<T> compositeRotationAcceleration(final FieldTransform<T> first, final FieldTransform<T> second) {
- final FieldVector3D<T> o1 = first.angular.getRotationRate();
- final FieldVector3D<T> oDot1 = first.angular.getRotationAcceleration();
- final FieldRotation<T> r2 = second.angular.getRotation();
- final FieldVector3D<T> o2 = second.angular.getRotationRate();
- final FieldVector3D<T> oDot2 = second.angular.getRotationAcceleration();
- return new FieldVector3D<>( 1, oDot2,
- 1, r2.applyTo(oDot1),
- -1, FieldVector3D.crossProduct(o2, r2.applyTo(o1)));
- }
- /** {@inheritDoc} */
- public AbsoluteDate getDate() {
- return aDate;
- }
- /** Get the date.
- * @return date attached to the object
- */
- public FieldAbsoluteDate<T> getFieldDate() {
- return date;
- }
- /** {@inheritDoc} */
- public FieldTransform<T> shiftedBy(final double dt) {
- return new FieldTransform<>(date.shiftedBy(dt), aDate.shiftedBy(dt),
- cartesian.shiftedBy(dt), angular.shiftedBy(dt));
- }
- /** Get a time-shifted instance.
- * @param dt time shift in seconds
- * @return a new instance, shifted with respect to instance (which is not changed)
- */
- public FieldTransform<T> shiftedBy(final T dt) {
- return new FieldTransform<>(date.shiftedBy(dt), aDate.shiftedBy(dt.getReal()),
- cartesian.shiftedBy(dt), angular.shiftedBy(dt));
- }
- /** Interpolate a transform from a sample set of existing transforms.
- * <p>
- * Calling this method is equivalent to call {@link #interpolate(FieldAbsoluteDate,
- * CartesianDerivativesFilter, AngularDerivativesFilter, Collection)} with {@code cFilter}
- * set to {@link CartesianDerivativesFilter#USE_PVA} and {@code aFilter} set to
- * {@link AngularDerivativesFilter#USE_RRA}
- * set to true.
- * </p>
- * @param interpolationDate interpolation date
- * @param sample sample points on which interpolation should be done
- * @param <T> the type of the field elements
- * @return a new instance, interpolated at specified date
- */
- public static <T extends RealFieldElement<T>> FieldTransform<T> interpolate(final FieldAbsoluteDate<T> interpolationDate,
- final Collection<FieldTransform<T>> sample) {
- return interpolate(interpolationDate,
- CartesianDerivativesFilter.USE_PVA, AngularDerivativesFilter.USE_RRA,
- sample);
- }
- /** Interpolate a transform from a sample set of existing transforms.
- * <p>
- * Note that even if first time derivatives (velocities and rotation rates)
- * from sample can be ignored, the interpolated instance always includes
- * interpolated derivatives. This feature can be used explicitly to
- * compute these derivatives when it would be too complex to compute them
- * from an analytical formula: just compute a few sample points from the
- * explicit formula and set the derivatives to zero in these sample points,
- * then use interpolation to add derivatives consistent with the positions
- * and rotations.
- * </p>
- * <p>
- * As this implementation of interpolation is polynomial, it should be used only
- * with small samples (about 10-20 points) in order to avoid <a
- * href="http://en.wikipedia.org/wiki/Runge%27s_phenomenon">Runge's phenomenon</a>
- * and numerical problems (including NaN appearing).
- * </p>
- * @param date interpolation date
- * @param cFilter filter for derivatives from the sample to use in interpolation
- * @param aFilter filter for derivatives from the sample to use in interpolation
- * @param sample sample points on which interpolation should be done
- * @return a new instance, interpolated at specified date
- * @param <T> the type of the field elements
- */
- public static <T extends RealFieldElement<T>> FieldTransform<T> interpolate(final FieldAbsoluteDate<T> date,
- final CartesianDerivativesFilter cFilter,
- final AngularDerivativesFilter aFilter,
- final Collection<FieldTransform<T>> sample) {
- return interpolate(date, cFilter, aFilter, sample.stream());
- }
- /** Interpolate a transform from a sample set of existing transforms.
- * <p>
- * Note that even if first time derivatives (velocities and rotation rates)
- * from sample can be ignored, the interpolated instance always includes
- * interpolated derivatives. This feature can be used explicitly to
- * compute these derivatives when it would be too complex to compute them
- * from an analytical formula: just compute a few sample points from the
- * explicit formula and set the derivatives to zero in these sample points,
- * then use interpolation to add derivatives consistent with the positions
- * and rotations.
- * </p>
- * <p>
- * As this implementation of interpolation is polynomial, it should be used only
- * with small samples (about 10-20 points) in order to avoid <a
- * href="http://en.wikipedia.org/wiki/Runge%27s_phenomenon">Runge's phenomenon</a>
- * and numerical problems (including NaN appearing).
- * </p>
- * @param date interpolation date
- * @param cFilter filter for derivatives from the sample to use in interpolation
- * @param aFilter filter for derivatives from the sample to use in interpolation
- * @param sample sample points on which interpolation should be done
- * @return a new instance, interpolated at specified date
- * @param <T> the type of the field elements
- */
- public static <T extends RealFieldElement<T>> FieldTransform<T> interpolate(final FieldAbsoluteDate<T> date,
- final CartesianDerivativesFilter cFilter,
- final AngularDerivativesFilter aFilter,
- final Stream<FieldTransform<T>> sample) {
- final List<TimeStampedFieldPVCoordinates<T>> datedPV = new ArrayList<>();
- final List<TimeStampedFieldAngularCoordinates<T>> datedAC = new ArrayList<>();
- sample.forEach(t -> {
- datedPV.add(new TimeStampedFieldPVCoordinates<>(t.getDate(), t.getTranslation(), t.getVelocity(), t.getAcceleration()));
- datedAC.add(new TimeStampedFieldAngularCoordinates<>(t.getDate(), t.getRotation(), t.getRotationRate(), t.getRotationAcceleration()));
- });
- final TimeStampedFieldPVCoordinates<T> interpolatedPV = TimeStampedFieldPVCoordinates.interpolate(date, cFilter, datedPV);
- final TimeStampedFieldAngularCoordinates<T> interpolatedAC = TimeStampedFieldAngularCoordinates.interpolate(date, aFilter, datedAC);
- return new FieldTransform<>(date, date.toAbsoluteDate(), interpolatedPV, interpolatedAC);
- }
- /** Get the inverse transform of the instance.
- * @return inverse transform of the instance
- */
- public FieldTransform<T> getInverse() {
- final FieldRotation<T> r = angular.getRotation();
- final FieldVector3D<T> o = angular.getRotationRate();
- final FieldVector3D<T> oDot = angular.getRotationAcceleration();
- final FieldVector3D<T> rp = r.applyTo(cartesian.getPosition());
- final FieldVector3D<T> rv = r.applyTo(cartesian.getVelocity());
- final FieldVector3D<T> ra = r.applyTo(cartesian.getAcceleration());
- final FieldVector3D<T> pInv = rp.negate();
- final FieldVector3D<T> crossP = FieldVector3D.crossProduct(o, rp);
- final FieldVector3D<T> vInv = crossP.subtract(rv);
- final FieldVector3D<T> crossV = FieldVector3D.crossProduct(o, rv);
- final FieldVector3D<T> crossDotP = FieldVector3D.crossProduct(oDot, rp);
- final FieldVector3D<T> crossCrossP = FieldVector3D.crossProduct(o, crossP);
- final FieldVector3D<T> aInv = new FieldVector3D<>(-1, ra,
- 2, crossV,
- 1, crossDotP,
- -1, crossCrossP);
- return new FieldTransform<>(date, aDate, new FieldPVCoordinates<>(pInv, vInv, aInv), angular.revert());
- }
- /** Get a frozen transform.
- * <p>
- * This method creates a copy of the instance but frozen in time,
- * i.e. with velocity, acceleration and rotation rate forced to zero.
- * </p>
- * @return a new transform, without any time-dependent parts
- */
- public FieldTransform<T> freeze() {
- return new FieldTransform<>(date, aDate,
- new FieldPVCoordinates<>(cartesian.getPosition(),
- FieldVector3D.getZero(date.getField()),
- FieldVector3D.getZero(date.getField())),
- new FieldAngularCoordinates<>(angular.getRotation(),
- FieldVector3D.getZero(date.getField()),
- FieldVector3D.getZero(date.getField())));
- }
- /** Transform a position vector (including translation effects).
- * @param position vector to transform
- * @return transformed position
- */
- public FieldVector3D<T> transformPosition(final Vector3D position) {
- return angular.getRotation().applyTo(cartesian.getPosition().add(position));
- }
- /** Transform a position vector (including translation effects).
- * @param position vector to transform
- * @return transformed position
- */
- public FieldVector3D<T> transformPosition(final FieldVector3D<T> position) {
- return angular.getRotation().applyTo(position.add(cartesian.getPosition()));
- }
- /** Transform a vector (ignoring translation effects).
- * @param vector vector to transform
- * @return transformed vector
- */
- public FieldVector3D<T> transformVector(final Vector3D vector) {
- return angular.getRotation().applyTo(vector);
- }
- /** Transform a vector (ignoring translation effects).
- * @param vector vector to transform
- * @return transformed vector
- */
- public FieldVector3D<T> transformVector(final FieldVector3D<T> vector) {
- return angular.getRotation().applyTo(vector);
- }
- /** Transform a line.
- * @param line to transform
- * @return transformed line
- */
- public FieldLine<T> transformLine(final Line line) {
- final FieldVector3D<T> transformedP0 = transformPosition(line.getOrigin());
- final FieldVector3D<T> transformedP1 = transformPosition(line.pointAt(1.0e6));
- return new FieldLine<>(transformedP0, transformedP1, 1.0e-10);
- }
- /** Transform a line.
- * @param line to transform
- * @return transformed line
- */
- public FieldLine<T> transformLine(final FieldLine<T> line) {
- final FieldVector3D<T> transformedP0 = transformPosition(line.getOrigin());
- final FieldVector3D<T> transformedP1 = transformPosition(line.pointAt(1.0e6));
- return new FieldLine<>(transformedP0, transformedP1, 1.0e-10);
- }
- /** Transform {@link TimeStampedPVCoordinates} including kinematic effects.
- * <p>
- * In order to allow the user more flexibility, this method does <em>not</em> check for
- * consistency between the transform {@link #getDate() date} and the time-stamped
- * position-velocity {@link TimeStampedPVCoordinates#getDate() date}. The returned
- * value will always have the same {@link TimeStampedPVCoordinates#getDate() date} as
- * the input argument, regardless of the instance {@link #getDate() date}.
- * </p>
- * @param pv time-stamped position-velocity to transform.
- * @return transformed time-stamped position-velocity
- */
- public FieldPVCoordinates<T> transformPVCoordinates(final PVCoordinates pv) {
- return angular.applyTo(new FieldPVCoordinates<>(cartesian.getPosition().add(pv.getPosition()),
- cartesian.getVelocity().add(pv.getVelocity()),
- cartesian.getAcceleration().add(pv.getAcceleration())));
- }
- /** Transform {@link TimeStampedPVCoordinates} including kinematic effects.
- * <p>
- * In order to allow the user more flexibility, this method does <em>not</em> check for
- * consistency between the transform {@link #getDate() date} and the time-stamped
- * position-velocity {@link TimeStampedPVCoordinates#getDate() date}. The returned
- * value will always have the same {@link TimeStampedPVCoordinates#getDate() date} as
- * the input argument, regardless of the instance {@link #getDate() date}.
- * </p>
- * @param pv time-stamped position-velocity to transform.
- * @return transformed time-stamped position-velocity
- */
- public TimeStampedFieldPVCoordinates<T> transformPVCoordinates(final TimeStampedPVCoordinates pv) {
- return angular.applyTo(new TimeStampedFieldPVCoordinates<>(pv.getDate(),
- cartesian.getPosition().add(pv.getPosition()),
- cartesian.getVelocity().add(pv.getVelocity()),
- cartesian.getAcceleration().add(pv.getAcceleration())));
- }
- /** Transform {@link TimeStampedFieldPVCoordinates} including kinematic effects.
- * <p>
- * BEWARE! This method does explicit computation of velocity and acceleration by combining
- * the transform velocity, acceleration, rotation rate and rotation acceleration with the
- * velocity and acceleration from the argument. This implies that this method should
- * <em>not</em> be used when derivatives are contained in the {@link RealFieldElement field
- * elements} (typically when using {@link org.hipparchus.analysis.differentiation.DerivativeStructure
- * DerivativeStructure} elements where time is one of the differentiation parameter), otherwise
- * the time derivatives would be computed twice, once explicitly in this method and once implicitly
- * in the field operations. If time derivatives are contained in the field elements themselves,
- * then rather than this method the {@link #transformPosition(FieldVector3D) transformPosition}
- * method should be used, so the derivatives are computed once, as part of the field. This
- * method is rather expected to be used when the field elements are {@link
- * org.hipparchus.analysis.differentiation.DerivativeStructure DerivativeStructure} instances
- * where the differentiation parameters are not time (they can typically be initial state
- * for computing state transition matrices or force models parameters, or ground stations
- * positions, ...).
- * </p>
- * <p>
- * In order to allow the user more flexibility, this method does <em>not</em> check for
- * consistency between the transform {@link #getDate() date} and the time-stamped
- * position-velocity {@link TimeStampedFieldPVCoordinates#getDate() date}. The returned
- * value will always have the same {@link TimeStampedFieldPVCoordinates#getDate() date} as
- * the input argument, regardless of the instance {@link #getDate() date}.
- * </p>
- * @param pv time-stamped position-velocity to transform.
- * @return transformed time-stamped position-velocity
- */
- public FieldPVCoordinates<T> transformPVCoordinates(final FieldPVCoordinates<T> pv) {
- return angular.applyTo(new FieldPVCoordinates<>(pv.getPosition().add(cartesian.getPosition()),
- pv.getVelocity().add(cartesian.getVelocity()),
- pv.getAcceleration().add(cartesian.getAcceleration())));
- }
- /** Transform {@link TimeStampedFieldPVCoordinates} including kinematic effects.
- * <p>
- * BEWARE! This method does explicit computation of velocity and acceleration by combining
- * the transform velocity, acceleration, rotation rate and rotation acceleration with the
- * velocity and acceleration from the argument. This implies that this method should
- * <em>not</em> be used when derivatives are contained in the {@link RealFieldElement field
- * elements} (typically when using {@link org.hipparchus.analysis.differentiation.DerivativeStructure
- * DerivativeStructure} elements where time is one of the differentiation parameter), otherwise
- * the time derivatives would be computed twice, once explicitly in this method and once implicitly
- * in the field operations. If time derivatives are contained in the field elements themselves,
- * then rather than this method the {@link #transformPosition(FieldVector3D) transformPosition}
- * method should be used, so the derivatives are computed once, as part of the field. This
- * method is rather expected to be used when the field elements are {@link
- * org.hipparchus.analysis.differentiation.DerivativeStructure DerivativeStructure} instances
- * where the differentiation parameters are not time (they can typically be initial state
- * for computing state transition matrices or force models parameters, or ground stations
- * positions, ...).
- * </p>
- * <p>
- * In order to allow the user more flexibility, this method does <em>not</em> check for
- * consistency between the transform {@link #getDate() date} and the time-stamped
- * position-velocity {@link TimeStampedFieldPVCoordinates#getDate() date}. The returned
- * value will always have the same {@link TimeStampedFieldPVCoordinates#getDate() date} as
- * the input argument, regardless of the instance {@link #getDate() date}.
- * </p>
- * @param pv time-stamped position-velocity to transform.
- * @return transformed time-stamped position-velocity
- */
- public TimeStampedFieldPVCoordinates<T> transformPVCoordinates(final TimeStampedFieldPVCoordinates<T> pv) {
- return angular.applyTo(new TimeStampedFieldPVCoordinates<>(pv.getDate(),
- pv.getPosition().add(cartesian.getPosition()),
- pv.getVelocity().add(cartesian.getVelocity()),
- pv.getAcceleration().add(cartesian.getAcceleration())));
- }
- /** Compute the Jacobian of the {@link #transformPVCoordinates(FieldPVCoordinates)}
- * method of the transform.
- * <p>
- * Element {@code jacobian[i][j]} is the derivative of Cartesian coordinate i
- * of the transformed {@link FieldPVCoordinates} with respect to Cartesian coordinate j
- * of the input {@link FieldPVCoordinates} in method {@link #transformPVCoordinates(FieldPVCoordinates)}.
- * </p>
- * <p>
- * This definition implies that if we define position-velocity coordinates
- * <pre>PV₁ = transform.transformPVCoordinates(PV₀)</pre>
- * then their differentials dPV₁ and dPV₀ will obey the following relation
- * where J is the matrix computed by this method:
- * <pre>dPV₁ = J × dPV₀</pre>
- *
- * @param selector selector specifying the size of the upper left corner that must be filled
- * (either 3x3 for positions only, 6x6 for positions and velocities, 9x9 for positions,
- * velocities and accelerations)
- * @param jacobian placeholder matrix whose upper-left corner is to be filled with
- * the Jacobian, the rest of the matrix remaining untouched
- */
- public void getJacobian(final CartesianDerivativesFilter selector, final T[][] jacobian) {
- final T zero = date.getField().getZero();
- // elementary matrix for rotation
- final T[][] mData = angular.getRotation().getMatrix();
- // dP1/dP0
- System.arraycopy(mData[0], 0, jacobian[0], 0, 3);
- System.arraycopy(mData[1], 0, jacobian[1], 0, 3);
- System.arraycopy(mData[2], 0, jacobian[2], 0, 3);
- if (selector.getMaxOrder() >= 1) {
- // dP1/dV0
- Arrays.fill(jacobian[0], 3, 6, zero);
- Arrays.fill(jacobian[1], 3, 6, zero);
- Arrays.fill(jacobian[2], 3, 6, zero);
- // dV1/dP0
- final FieldVector3D<T> o = angular.getRotationRate();
- final T ox = o.getX();
- final T oy = o.getY();
- final T oz = o.getZ();
- for (int i = 0; i < 3; ++i) {
- jacobian[3][i] = oz.multiply(mData[1][i]).subtract(oy.multiply(mData[2][i]));
- jacobian[4][i] = ox.multiply(mData[2][i]).subtract(oz.multiply(mData[0][i]));
- jacobian[5][i] = oy.multiply(mData[0][i]).subtract(ox.multiply(mData[1][i]));
- }
- // dV1/dV0
- System.arraycopy(mData[0], 0, jacobian[3], 3, 3);
- System.arraycopy(mData[1], 0, jacobian[4], 3, 3);
- System.arraycopy(mData[2], 0, jacobian[5], 3, 3);
- if (selector.getMaxOrder() >= 2) {
- // dP1/dA0
- Arrays.fill(jacobian[0], 6, 9, zero);
- Arrays.fill(jacobian[1], 6, 9, zero);
- Arrays.fill(jacobian[2], 6, 9, zero);
- // dV1/dA0
- Arrays.fill(jacobian[3], 6, 9, zero);
- Arrays.fill(jacobian[4], 6, 9, zero);
- Arrays.fill(jacobian[5], 6, 9, zero);
- // dA1/dP0
- final FieldVector3D<T> oDot = angular.getRotationAcceleration();
- final T oDotx = oDot.getX();
- final T oDoty = oDot.getY();
- final T oDotz = oDot.getZ();
- for (int i = 0; i < 3; ++i) {
- jacobian[6][i] = oDotz.multiply(mData[1][i]).subtract(oDoty.multiply(mData[2][i])).add(oz.multiply(jacobian[4][i]).subtract(oy.multiply(jacobian[5][i])));
- jacobian[7][i] = oDotx.multiply(mData[2][i]).subtract(oDotz.multiply(mData[0][i])).add(ox.multiply(jacobian[5][i]).subtract(oz.multiply(jacobian[3][i])));
- jacobian[8][i] = oDoty.multiply(mData[0][i]).subtract(oDotx.multiply(mData[1][i])).add(oy.multiply(jacobian[3][i]).subtract(ox.multiply(jacobian[4][i])));
- }
- // dA1/dV0
- for (int i = 0; i < 3; ++i) {
- jacobian[6][i + 3] = oz.multiply(mData[1][i]).subtract(oy.multiply(mData[2][i])).multiply(2);
- jacobian[7][i + 3] = ox.multiply(mData[2][i]).subtract(oz.multiply(mData[0][i])).multiply(2);
- jacobian[8][i + 3] = oy.multiply(mData[0][i]).subtract(ox.multiply(mData[1][i])).multiply(2);
- }
- // dA1/dA0
- System.arraycopy(mData[0], 0, jacobian[6], 6, 3);
- System.arraycopy(mData[1], 0, jacobian[7], 6, 3);
- System.arraycopy(mData[2], 0, jacobian[8], 6, 3);
- }
- }
- }
- /** Get the underlying elementary Cartesian part.
- * <p>A transform can be uniquely represented as an elementary
- * translation followed by an elementary rotation. This method
- * returns this unique elementary translation with its derivative.</p>
- * @return underlying elementary Cartesian part
- * @see #getTranslation()
- * @see #getVelocity()
- */
- public FieldPVCoordinates<T> getCartesian() {
- return cartesian;
- }
- /** Get the underlying elementary translation.
- * <p>A transform can be uniquely represented as an elementary
- * translation followed by an elementary rotation. This method
- * returns this unique elementary translation.</p>
- * @return underlying elementary translation
- * @see #getCartesian()
- * @see #getVelocity()
- * @see #getAcceleration()
- */
- public FieldVector3D<T> getTranslation() {
- return cartesian.getPosition();
- }
- /** Get the first time derivative of the translation.
- * @return first time derivative of the translation
- * @see #getCartesian()
- * @see #getTranslation()
- * @see #getAcceleration()
- */
- public FieldVector3D<T> getVelocity() {
- return cartesian.getVelocity();
- }
- /** Get the second time derivative of the translation.
- * @return second time derivative of the translation
- * @see #getCartesian()
- * @see #getTranslation()
- * @see #getVelocity()
- */
- public FieldVector3D<T> getAcceleration() {
- return cartesian.getAcceleration();
- }
- /** Get the underlying elementary angular part.
- * <p>A transform can be uniquely represented as an elementary
- * translation followed by an elementary rotation. This method
- * returns this unique elementary rotation with its derivative.</p>
- * @return underlying elementary angular part
- * @see #getRotation()
- * @see #getRotationRate()
- * @see #getRotationAcceleration()
- */
- public FieldAngularCoordinates<T> getAngular() {
- return angular;
- }
- /** Get the underlying elementary rotation.
- * <p>A transform can be uniquely represented as an elementary
- * translation followed by an elementary rotation. This method
- * returns this unique elementary rotation.</p>
- * @return underlying elementary rotation
- * @see #getAngular()
- * @see #getRotationRate()
- * @see #getRotationAcceleration()
- */
- public FieldRotation<T> getRotation() {
- return angular.getRotation();
- }
- /** Get the first time derivative of the rotation.
- * <p>The norm represents the angular rate.</p>
- * @return First time derivative of the rotation
- * @see #getAngular()
- * @see #getRotation()
- * @see #getRotationAcceleration()
- */
- public FieldVector3D<T> getRotationRate() {
- return angular.getRotationRate();
- }
- /** Get the second time derivative of the rotation.
- * @return Second time derivative of the rotation
- * @see #getAngular()
- * @see #getRotation()
- * @see #getRotationRate()
- */
- public FieldVector3D<T> getRotationAcceleration() {
- return angular.getRotationAcceleration();
- }
- /** Specialized class for identity transform. */
- private static class FieldIdentityTransform<T extends RealFieldElement<T>> extends FieldTransform<T> {
- /** Simple constructor.
- * @param field field for the components
- */
- FieldIdentityTransform(final Field<T> field) {
- super(FieldAbsoluteDate.getJ2000Epoch(field), AbsoluteDate.J2000_EPOCH,
- FieldPVCoordinates.getZero(field),
- FieldAngularCoordinates.getIdentity(field));
- }
- /** {@inheritDoc} */
- @Override
- public FieldTransform<T> shiftedBy(final double dt) {
- return this;
- }
- /** {@inheritDoc} */
- @Override
- public FieldTransform<T> getInverse() {
- return this;
- }
- /** {@inheritDoc} */
- @Override
- public FieldVector3D<T> transformPosition(final FieldVector3D<T> position) {
- return position;
- }
- /** {@inheritDoc} */
- @Override
- public FieldVector3D<T> transformVector(final FieldVector3D<T> vector) {
- return vector;
- }
- /** {@inheritDoc} */
- @Override
- public FieldLine<T> transformLine(final FieldLine<T> line) {
- return line;
- }
- /** {@inheritDoc} */
- @Override
- public FieldPVCoordinates<T> transformPVCoordinates(final FieldPVCoordinates<T> pv) {
- return pv;
- }
- /** {@inheritDoc} */
- @Override
- public void getJacobian(final CartesianDerivativesFilter selector, final T[][] jacobian) {
- final int n = 3 * (selector.getMaxOrder() + 1);
- for (int i = 0; i < n; ++i) {
- Arrays.fill(jacobian[i], 0, n, getFieldDate().getField().getZero());
- jacobian[i][i] = getFieldDate().getField().getOne();
- }
- }
- }
- }