DSSTThirdBodyContext.java
/* Copyright 2002-2019 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.propagation.semianalytical.dsst.forces;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.util.CombinatoricsUtils;
import org.hipparchus.util.FastMath;
import org.orekit.bodies.CelestialBody;
import org.orekit.propagation.semianalytical.dsst.utilities.AuxiliaryElements;
import org.orekit.propagation.semianalytical.dsst.utilities.CoefficientsFactory;
import org.orekit.propagation.semianalytical.dsst.utilities.UpperBounds;
/**
* This class is a container for the common parameters used in {@link DSSTThirdBody}.
* <p>
* It performs parameters initialization at each integration step for the third
* body attraction perturbation.
* <p>
* @author Bryan Cazabonne
* @since 10.0
*/
class DSSTThirdBodyContext extends ForceModelContext {
/** Max power for summation. */
private static final int MAX_POWER = 22;
/** Truncation tolerance for big, eccentric orbits. */
private static final double BIG_TRUNCATION_TOLERANCE = 1.e-1;
/** Truncation tolerance for small orbits. */
private static final double SMALL_TRUNCATION_TOLERANCE = 1.9e-6;
/** Maximum power for eccentricity used in short periodic computation. */
private static final int MAX_ECCPOWER_SP = 4;
/** Max power for a/R3 in the serie expansion. */
private int maxAR3Pow;
/** Max power for e in the serie expansion. */
private int maxEccPow;
/** a / R3 up to power maxAR3Pow. */
private double[] aoR3Pow;
/** Max power for e in the serie expansion (for short periodics). */
private int maxEccPowShort;
/** Max frequency of F. */
private int maxFreqF;
/** Qns coefficients. */
private double[][] Qns;
/** Standard gravitational parameter μ for the body in m³/s². */
private final double gm;
/** Distance from center of mass of the central body to the 3rd body. */
private double R3;
/** A = sqrt(μ * a). */
private final double A;
// Direction cosines of the symmetry axis
/** α. */
private double alpha;
/** β. */
private double beta;
/** γ. */
private double gamma;
/** B². */
private double BB;
/** B³. */
private double BBB;
/** Χ = 1 / sqrt(1 - e²) = 1 / B. */
private double X;
/** Χ². */
private double XX;
/** Χ³. */
private double XXX;
/** -2 * a / A. */
private double m2aoA;
/** B / A. */
private double BoA;
/** 1 / (A * B). */
private double ooAB;
/** -C / (2 * A * B). */
private double mCo2AB;
/** B / A(1 + B). */
private double BoABpo;
/** mu3 / R3. */
private double muoR3;
/** b = 1 / (1 + sqrt(1 - e²)) = 1 / (1 + B).*/
private double b;
/** h * Χ³. */
private double hXXX;
/** k * Χ³. */
private double kXXX;
/** Keplerian mean motion. */
private final double motion;
/**
* Simple constructor.
*
* @param auxiliaryElements auxiliary elements related to the current orbit
* @param thirdBody body the 3rd body to consider
* @param parameters values of the force model parameters
*/
DSSTThirdBodyContext(final AuxiliaryElements auxiliaryElements, final CelestialBody thirdBody, final double[] parameters) {
super(auxiliaryElements);
final double mu = parameters[1];
A = FastMath.sqrt(mu * auxiliaryElements.getSma());
this.gm = parameters[0];
// Keplerian Mean Motion
final double absA = FastMath.abs(auxiliaryElements.getSma());
motion = FastMath.sqrt(mu / absA) / absA;
// Distance from center of mass of the central body to the 3rd body
final Vector3D bodyPos = thirdBody.getPVCoordinates(auxiliaryElements.getDate(), auxiliaryElements.getFrame()).getPosition();
R3 = bodyPos.getNorm();
// Direction cosines
final Vector3D bodyDir = bodyPos.normalize();
alpha = bodyDir.dotProduct(auxiliaryElements.getVectorF());
beta = bodyDir.dotProduct(auxiliaryElements.getVectorG());
gamma = bodyDir.dotProduct(auxiliaryElements.getVectorW());
//Χ<sup>-2</sup>.
BB = auxiliaryElements.getB() * auxiliaryElements.getB();
//Χ<sup>-3</sup>.
BBB = BB * auxiliaryElements.getB();
//b = 1 / (1 + B)
b = 1. / (1. + auxiliaryElements.getB());
// Χ
X = 1. / auxiliaryElements.getB();
XX = X * X;
XXX = X * XX;
// -2 * a / A
m2aoA = -2. * auxiliaryElements.getSma() / A;
// B / A
BoA = auxiliaryElements.getB() / A;
// 1 / AB
ooAB = 1. / (A * auxiliaryElements.getB());
// -C / 2AB
mCo2AB = -auxiliaryElements.getC() * ooAB / 2.;
// B / A(1 + B)
BoABpo = BoA / (1. + auxiliaryElements.getB());
// mu3 / R3
muoR3 = gm / R3;
//h * Χ³
hXXX = auxiliaryElements.getH() * XXX;
//k * Χ³
kXXX = auxiliaryElements.getK() * XXX;
// Truncation tolerance.
final double aoR3 = auxiliaryElements.getSma() / R3;
final double tol = ( aoR3 > .3 || (aoR3 > .15 && auxiliaryElements.getEcc() > .25) ) ? BIG_TRUNCATION_TOLERANCE : SMALL_TRUNCATION_TOLERANCE;
// Utilities for truncation
// Set a lower bound for eccentricity
final double eo2 = FastMath.max(0.0025, auxiliaryElements.getEcc() / 2.);
final double x2o2 = XX / 2.;
final double[] eccPwr = new double[MAX_POWER];
final double[] chiPwr = new double[MAX_POWER];
eccPwr[0] = 1.;
chiPwr[0] = X;
for (int i = 1; i < MAX_POWER; i++) {
eccPwr[i] = eccPwr[i - 1] * eo2;
chiPwr[i] = chiPwr[i - 1] * x2o2;
}
// Auxiliary quantities.
final double ao2rxx = aoR3 / (2. * XX);
double xmuarn = ao2rxx * ao2rxx * gm / (X * R3);
double term = 0.;
// Compute max power for a/R3 and e.
maxAR3Pow = 2;
maxEccPow = 0;
int n = 2;
int m = 2;
int nsmd2 = 0;
do {
// Upper bound for Tnm.
term = xmuarn *
(CombinatoricsUtils.factorialDouble(n + m) / (CombinatoricsUtils.factorialDouble(nsmd2) * CombinatoricsUtils.factorialDouble(nsmd2 + m))) *
(CombinatoricsUtils.factorialDouble(n + m + 1) / (CombinatoricsUtils.factorialDouble(m) * CombinatoricsUtils.factorialDouble(n + 1))) *
(CombinatoricsUtils.factorialDouble(n - m + 1) / CombinatoricsUtils.factorialDouble(n + 1)) *
eccPwr[m] * UpperBounds.getDnl(XX, chiPwr[m], n + 2, m);
if (term < tol) {
if (m == 0) {
break;
} else if (m < 2) {
xmuarn *= ao2rxx;
m = 0;
n++;
nsmd2++;
} else {
m -= 2;
nsmd2++;
}
} else {
maxAR3Pow = n;
maxEccPow = FastMath.max(m, maxEccPow);
xmuarn *= ao2rxx;
m++;
n++;
}
} while (n < MAX_POWER);
maxEccPow = FastMath.min(maxAR3Pow, maxEccPow);
// allocate the array aoR3Pow
aoR3Pow = new double[maxAR3Pow + 1];
aoR3Pow[0] = 1.;
for (int i = 1; i <= maxAR3Pow; i++) {
aoR3Pow[i] = aoR3 * aoR3Pow[i - 1];
}
maxFreqF = maxAR3Pow + 1;
maxEccPowShort = MAX_ECCPOWER_SP;
Qns = CoefficientsFactory.computeQns(gamma, maxAR3Pow, FastMath.max(maxEccPow, maxEccPowShort));
}
/** Get A = sqrt(μ * a).
* @return A
*/
public double getA() {
return A;
}
/** Get direction cosine α for central body.
* @return α
*/
public double getAlpha() {
return alpha;
}
/** Get direction cosine β for central body.
* @return β
*/
public double getBeta() {
return beta;
}
/** Get direction cosine γ for central body.
* @return γ
*/
public double getGamma() {
return gamma;
}
/** Get B².
* @return B²
*/
public double getBB() {
return BB;
}
/** Get B³.
* @return B³
*/
public double getBBB() {
return BBB;
}
/** Get b = 1 / (1 + sqrt(1 - e²)) = 1 / (1 + B).
* @return b
*/
public double getb() {
return b;
}
/** Get Χ = 1 / sqrt(1 - e²) = 1 / B.
* @return Χ
*/
public double getX() {
return X;
}
/** Get m2aoA = -2 * a / A.
* @return m2aoA
*/
public double getM2aoA() {
return m2aoA;
}
/** Get B / A.
* @return BoA
*/
public double getBoA() {
return BoA;
}
/** Get ooAB = 1 / (A * B).
* @return ooAB
*/
public double getOoAB() {
return ooAB;
}
/** Get mCo2AB = -C / 2AB.
* @return mCo2AB
*/
public double getMCo2AB() {
return mCo2AB;
}
/** Get BoABpo = B / A(1 + B).
* @return BoABpo
*/
public double getBoABpo() {
return BoABpo;
}
/** Get muoR3 = mu3 / R3.
* @return muoR3
*/
public double getMuoR3() {
return muoR3;
}
/** Get hXXX = h * Χ³.
* @return hXXX
*/
public double getHXXX() {
return hXXX;
}
/** Get kXXX = h * Χ³.
* @return kXXX
*/
public double getKXXX() {
return kXXX;
}
/** Get the value of max power for a/R3 in the serie expansion.
* @return maxAR3Pow
*/
public int getMaxAR3Pow() {
return maxAR3Pow;
}
/** Get the value of max power for e in the serie expansion.
* @return maxEccPow
*/
public int getMaxEccPow() {
return maxEccPow;
}
/** Get the value of a / R3 up to power maxAR3Pow.
* @return aoR3Pow
*/
public double[] getAoR3Pow() {
return aoR3Pow;
}
/** Get the value of max frequency of F.
* @return maxFreqF
*/
public int getMaxFreqF() {
return maxFreqF;
}
/** Get the Keplerian mean motion.
* <p>The Keplerian mean motion is computed directly from semi major axis
* and central acceleration constant.</p>
* @return Keplerian mean motion in radians per second
*/
public double getMeanMotion() {
return motion;
}
/** Get the value of Qns coefficients.
* @return Qns
*/
public double[][] getQns() {
return Qns;
}
}