NewcombOperators.java
- /* Copyright 2002-2020 CS Group
- * Licensed to CS Group (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.propagation.semianalytical.dsst.utilities;
- import java.util.ArrayList;
- import java.util.List;
- import java.util.Map;
- import java.util.SortedMap;
- import java.util.TreeMap;
- import org.hipparchus.analysis.polynomials.PolynomialFunction;
- import org.hipparchus.util.FastMath;
- /**
- * Implementation of the Modified Newcomb Operators.
- *
- * <p> From equations 2.7.3 - (12)(13) of the Danielson paper, those operators
- * are defined as:
- *
- * <p>
- * 4(ρ + σ)Y<sub>ρ,σ</sub><sup>n,s</sup> = <br>
- * 2(2s - n)Y<sub>ρ-1,σ</sub><sup>n,s+1</sup> + (s - n)Y<sub>ρ-2,σ</sub><sup>n,s+2</sup> <br>
- * - 2(2s + n)Y<sub>ρ,σ-1</sub><sup>n,s-1</sup> - (s+n)Y<sub>ρ,σ-2</sub><sup>n,s-2</sup> <br>
- * + 2(2ρ + 2σ + 2 + 3n)Y<sub>ρ-1,σ-1</sub><sup>n,s</sup>
- *
- * <p> Initialization is given by : Y<sub>0,0</sub><sup>n,s</sup> = 1
- *
- * <p> Internally, the Modified Newcomb Operators are stored as an array of
- * {@link PolynomialFunction} :
- *
- * <p> Y<sub>ρ,σ</sub><sup>n,s</sup> = P<sub>k0</sub> + P<sub>k1</sub>n + ... +
- * P<sub>kj</sub>n<sup>j</sup>
- *
- * <p> where the P<sub>kj</sub> are given by
- *
- * <p> P<sub>kj</sub> = ∑<sub>j=0;ρ</sub> a<sub>j</sub>s<sup>j</sup>
- *
- * @author Romain Di Costanzo
- * @author Pascal Parraud
- */
- public class NewcombOperators {
- /** Storage map. */
- private static final Map<NewKey, Double> MAP = new TreeMap<NewKey, Double>();
- /** Private constructor as class is a utility.
- */
- private NewcombOperators() {
- }
- /** Get the Newcomb operator evaluated at n, s, ρ, σ.
- * <p>
- * This method is guaranteed to be thread-safe
- * </p>
- * @param rho ρ index
- * @param sigma σ index
- * @param n n index
- * @param s s index
- * @return Y<sub>ρ,σ</sub><sup>n,s</sup>
- */
- public static double getValue(final int rho, final int sigma, final int n, final int s) {
- final NewKey key = new NewKey(n, s, rho, sigma);
- synchronized (MAP) {
- if (MAP.containsKey(key)) {
- return MAP.get(key);
- }
- }
- // Get the Newcomb polynomials for the given rho and sigma
- final List<PolynomialFunction> polynomials = PolynomialsGenerator.getPolynomials(rho, sigma);
- // Compute the value from the list of polynomials for the given n and s
- double nPower = 1.;
- double value = 0.0;
- for (final PolynomialFunction polynomial : polynomials) {
- value += polynomial.value(s) * nPower;
- nPower = n * nPower;
- }
- synchronized (MAP) {
- MAP.put(key, value);
- }
- return value;
- }
- /** Generator for Newcomb polynomials. */
- private static class PolynomialsGenerator {
- /** Polynomials storage. */
- private static final SortedMap<Couple, List<PolynomialFunction>> POLYNOMIALS =
- new TreeMap<Couple, List<PolynomialFunction>>();
- /** Private constructor as class is a utility.
- */
- private PolynomialsGenerator() {
- }
- /** Get the list of polynomials representing the Newcomb Operator for the (ρ,σ) couple.
- * <p>
- * This method is guaranteed to be thread-safe
- * </p>
- * @param rho ρ value
- * @param sigma σ value
- * @return Polynomials representing the Newcomb Operator for the (ρ,σ) couple.
- */
- private static List<PolynomialFunction> getPolynomials(final int rho, final int sigma) {
- final Couple couple = new Couple(rho, sigma);
- synchronized (POLYNOMIALS) {
- if (POLYNOMIALS.isEmpty()) {
- // Initialize lists
- final List<PolynomialFunction> l00 = new ArrayList<PolynomialFunction>();
- final List<PolynomialFunction> l01 = new ArrayList<PolynomialFunction>();
- final List<PolynomialFunction> l10 = new ArrayList<PolynomialFunction>();
- final List<PolynomialFunction> l11 = new ArrayList<PolynomialFunction>();
- // Y(rho = 0, sigma = 0) = 1
- l00.add(new PolynomialFunction(new double[] {
- 1.
- }));
- // Y(rho = 0, sigma = 1) = -s - n/2
- l01.add(new PolynomialFunction(new double[] {
- 0, -1.
- }));
- l01.add(new PolynomialFunction(new double[] {
- -0.5
- }));
- // Y(rho = 1, sigma = 0) = s - n/2
- l10.add(new PolynomialFunction(new double[] {
- 0, 1.
- }));
- l10.add(new PolynomialFunction(new double[] {
- -0.5
- }));
- // Y(rho = 1, sigma = 1) = 3/2 - s² + 5n/4 + n²/4
- l11.add(new PolynomialFunction(new double[] {
- 1.5, 0., -1.
- }));
- l11.add(new PolynomialFunction(new double[] {
- 1.25
- }));
- l11.add(new PolynomialFunction(new double[] {
- 0.25
- }));
- // Initialize polynomials
- POLYNOMIALS.put(new Couple(0, 0), l00);
- POLYNOMIALS.put(new Couple(0, 1), l01);
- POLYNOMIALS.put(new Couple(1, 0), l10);
- POLYNOMIALS.put(new Couple(1, 1), l11);
- }
- // If order hasn't been computed yet, update the Newcomb polynomials
- if (!POLYNOMIALS.containsKey(couple)) {
- PolynomialsGenerator.computeFor(rho, sigma);
- }
- return POLYNOMIALS.get(couple);
- }
- }
- /** Compute the Modified Newcomb Operators up to a given (ρ, σ) couple.
- * <p>
- * The recursive computation uses equation 2.7.3-(12) of the Danielson paper.
- * </p>
- * @param rho ρ value to reach
- * @param sigma σ value to reach
- */
- private static void computeFor(final int rho, final int sigma) {
- // Initialize result :
- List<PolynomialFunction> result = new ArrayList<PolynomialFunction>();
- // Get the coefficient from the recurrence relation
- final Map<Integer, List<PolynomialFunction>> map = generateRecurrenceCoefficients(rho, sigma);
- // Compute (s - n) * Y[rho - 2, sigma][n, s + 2]
- if (rho >= 2) {
- final List<PolynomialFunction> poly = map.get(0);
- final List<PolynomialFunction> list = getPolynomials(rho - 2, sigma);
- result = multiplyPolynomialList(poly, shiftList(list, 2));
- }
- // Compute 2(2rho + 2sigma + 2 + 3n) * Y[rho - 1, sigma - 1][n, s]
- if (rho >= 1 && sigma >= 1) {
- final List<PolynomialFunction> poly = map.get(1);
- final List<PolynomialFunction> list = getPolynomials(rho - 1, sigma - 1);
- result = sumPolynomialList(result, multiplyPolynomialList(poly, list));
- }
- // Compute 2(2s - n) * Y[rho - 1, sigma][n, s + 1]
- if (rho >= 1) {
- final List<PolynomialFunction> poly = map.get(2);
- final List<PolynomialFunction> list = getPolynomials(rho - 1, sigma);
- result = sumPolynomialList(result, multiplyPolynomialList(poly, shiftList(list, 1)));
- }
- // Compute -(s + n) * Y[rho, sigma - 2][n, s - 2]
- if (sigma >= 2) {
- final List<PolynomialFunction> poly = map.get(3);
- final List<PolynomialFunction> list = getPolynomials(rho, sigma - 2);
- result = sumPolynomialList(result, multiplyPolynomialList(poly, shiftList(list, -2)));
- }
- // Compute -2(2s + n) * Y[rho, sigma - 1][n, s - 1]
- if (sigma >= 1) {
- final List<PolynomialFunction> poly = map.get(4);
- final List<PolynomialFunction> list = getPolynomials(rho, sigma - 1);
- result = sumPolynomialList(result, multiplyPolynomialList(poly, shiftList(list, -1)));
- }
- // Save polynomials for current (rho, sigma) couple
- final Couple couple = new Couple(rho, sigma);
- POLYNOMIALS.put(couple, result);
- }
- /** Multiply two lists of polynomials defined as the internal representation of the Newcomb Operator.
- * <p>
- * Let's call R<sub>s</sub>(n) the result returned by the method :
- * <pre>
- * R<sub>s</sub>(n) = (P<sub>s₀</sub> + P<sub>s₁</sub>n + ... + P<sub>s<sub>j</sub></sub>n<sup>j</sup>) *(Q<sub>s₀</sub> + Q<sub>s₁</sub>n + ... + Q<sub>s<sub>k</sub></sub>n<sup>k</sup>)
- * </pre>
- *
- * where the P<sub>s<sub>j</sub></sub> and Q<sub>s<sub>k</sub></sub> are polynomials in s,
- * s being the index of the Y<sub>ρ,σ</sub><sup>n,s</sup> function
- *
- * @param poly1 first list of polynomials
- * @param poly2 second list of polynomials
- * @return R<sub>s</sub>(n) as a list of {@link PolynomialFunction}
- */
- private static List<PolynomialFunction> multiplyPolynomialList(final List<PolynomialFunction> poly1,
- final List<PolynomialFunction> poly2) {
- // Initialize the result list of polynomial function
- final List<PolynomialFunction> result = new ArrayList<PolynomialFunction>();
- initializeListOfPolynomials(poly1.size() + poly2.size() - 1, result);
- int i = 0;
- // Iterate over first polynomial list
- for (PolynomialFunction f1 : poly1) {
- // Iterate over second polynomial list
- for (int j = i; j < poly2.size() + i; j++) {
- final PolynomialFunction p2 = poly2.get(j - i);
- // Get previous polynomial for current 'n' order
- final PolynomialFunction previousP2 = result.get(j);
- // Replace the current order by summing the product of both of the polynomials
- result.set(j, previousP2.add(f1.multiply(p2)));
- }
- // shift polynomial order in 'n'
- i++;
- }
- return result;
- }
- /** Sum two lists of {@link PolynomialFunction}.
- * @param poly1 first list
- * @param poly2 second list
- * @return the summed list
- */
- private static List<PolynomialFunction> sumPolynomialList(final List<PolynomialFunction> poly1,
- final List<PolynomialFunction> poly2) {
- // identify the lowest degree polynomial
- final int lowLength = FastMath.min(poly1.size(), poly2.size());
- final int highLength = FastMath.max(poly1.size(), poly2.size());
- // Initialize the result list of polynomial function
- final List<PolynomialFunction> result = new ArrayList<PolynomialFunction>();
- initializeListOfPolynomials(highLength, result);
- for (int i = 0; i < lowLength; i++) {
- // Add polynomials by increasing order of 'n'
- result.set(i, poly1.get(i).add(poly2.get(i)));
- }
- // Complete the list if lists are of different size:
- for (int i = lowLength; i < highLength; i++) {
- if (poly1.size() < poly2.size()) {
- result.set(i, poly2.get(i));
- } else {
- result.set(i, poly1.get(i));
- }
- }
- return result;
- }
- /** Initialize an empty list of polynomials.
- * @param i order
- * @param result list into which polynomials should be added
- */
- private static void initializeListOfPolynomials(final int i,
- final List<PolynomialFunction> result) {
- for (int k = 0; k < i; k++) {
- result.add(new PolynomialFunction(new double[] {0.}));
- }
- }
- /** Shift a list of {@link PolynomialFunction}.
- *
- * @param polynomialList list of {@link PolynomialFunction}
- * @param shift shift value
- * @return new list of shifted {@link PolynomialFunction}
- */
- private static List<PolynomialFunction> shiftList(final List<PolynomialFunction> polynomialList,
- final int shift) {
- final List<PolynomialFunction> shiftedList = new ArrayList<PolynomialFunction>();
- for (PolynomialFunction function : polynomialList) {
- shiftedList.add(new PolynomialFunction(shift(function.getCoefficients(), shift)));
- }
- return shiftedList;
- }
- /**
- * Compute the coefficients of the polynomial \(P_s(x)\)
- * whose values at point {@code x} will be the same as the those from the
- * original polynomial \(P(x)\) when computed at {@code x + shift}.
- * <p>
- * More precisely, let \(\Delta = \) {@code shift} and let
- * \(P_s(x) = P(x + \Delta)\). The returned array
- * consists of the coefficients of \(P_s\). So if \(a_0, ..., a_{n-1}\)
- * are the coefficients of \(P\), then the returned array
- * \(b_0, ..., b_{n-1}\) satisfies the identity
- * \(\sum_{i=0}^{n-1} b_i x^i = \sum_{i=0}^{n-1} a_i (x + \Delta)^i\) for all \(x\).
- * </p>
- * <p>
- * This method is a modified version of the method with the same name
- * in Hipparchus {@code PolynomialsUtils} class, simply changing
- * computation of binomial coefficients so degrees higher than 66 can be used.
- * </p>
- *
- * @param coefficients Coefficients of the original polynomial.
- * @param shift Shift value.
- * @return the coefficients \(b_i\) of the shifted
- * polynomial.
- */
- public static double[] shift(final double[] coefficients,
- final double shift) {
- final int dp1 = coefficients.length;
- final double[] newCoefficients = new double[dp1];
- // Pascal triangle.
- final double[][] coeff = new double[dp1][dp1];
- coeff[0][0] = 1;
- for (int i = 1; i < dp1; i++) {
- coeff[i][0] = 1;
- for (int j = 1; j < i; j++) {
- coeff[i][j] = coeff[i - 1][j - 1] + coeff[i - 1][j];
- }
- coeff[i][i] = 1;
- }
- // First polynomial coefficient.
- double shiftI = 1;
- for (int i = 0; i < dp1; i++) {
- newCoefficients[0] += coefficients[i] * shiftI;
- shiftI *= shift;
- }
- // Superior order.
- final int d = dp1 - 1;
- for (int i = 0; i < d; i++) {
- double shiftJmI = 1;
- for (int j = i; j < d; j++) {
- newCoefficients[i + 1] += coeff[j + 1][j - i] * coefficients[j + 1] * shiftJmI;
- shiftJmI *= shift;
- }
- }
- return newCoefficients;
- }
- /** Generate recurrence coefficients.
- *
- * @param rho ρ value
- * @param sigma σ value
- * @return recurrence coefficients
- */
- private static Map<Integer, List<PolynomialFunction>> generateRecurrenceCoefficients(final int rho, final int sigma) {
- final double den = 1. / (4. * (rho + sigma));
- final double denx2 = 2. * den;
- final double denx4 = 4. * den;
- // Initialization :
- final Map<Integer, List<PolynomialFunction>> list = new TreeMap<Integer, List<PolynomialFunction>>();
- final List<PolynomialFunction> poly0 = new ArrayList<PolynomialFunction>();
- final List<PolynomialFunction> poly1 = new ArrayList<PolynomialFunction>();
- final List<PolynomialFunction> poly2 = new ArrayList<PolynomialFunction>();
- final List<PolynomialFunction> poly3 = new ArrayList<PolynomialFunction>();
- final List<PolynomialFunction> poly4 = new ArrayList<PolynomialFunction>();
- // (s - n)
- poly0.add(new PolynomialFunction(new double[] {0., den}));
- poly0.add(new PolynomialFunction(new double[] {-den}));
- // 2(2 * rho + 2 * sigma + 2 + 3*n)
- poly1.add(new PolynomialFunction(new double[] {1. + denx4}));
- poly1.add(new PolynomialFunction(new double[] {denx2 + denx4}));
- // 2(2s - n)
- poly2.add(new PolynomialFunction(new double[] {0., denx4}));
- poly2.add(new PolynomialFunction(new double[] {-denx2}));
- // - (s + n)
- poly3.add(new PolynomialFunction(new double[] {0., -den}));
- poly3.add(new PolynomialFunction(new double[] {-den}));
- // - 2(2s + n)
- poly4.add(new PolynomialFunction(new double[] {0., -denx4}));
- poly4.add(new PolynomialFunction(new double[] {-denx2}));
- // Fill the map :
- list.put(0, poly0);
- list.put(1, poly1);
- list.put(2, poly2);
- list.put(3, poly3);
- list.put(4, poly4);
- return list;
- }
- }
- /** Private class to define a couple of value. */
- private static class Couple implements Comparable<Couple> {
- /** first couple value. */
- private final int rho;
- /** second couple value. */
- private final int sigma;
- /** Constructor.
- * @param rho first couple value
- * @param sigma second couple value
- */
- private Couple(final int rho, final int sigma) {
- this.rho = rho;
- this.sigma = sigma;
- }
- /** {@inheritDoc} */
- public int compareTo(final Couple c) {
- int result = 1;
- if (rho == c.rho) {
- if (sigma < c.sigma) {
- result = -1;
- } else if (sigma == c.sigma) {
- result = 0;
- }
- } else if (rho < c.rho) {
- result = -1;
- }
- return result;
- }
- /** {@inheritDoc} */
- public boolean equals(final Object couple) {
- if (couple == this) {
- // first fast check
- return true;
- }
- if ((couple != null) && (couple instanceof Couple)) {
- return (rho == ((Couple) couple).rho) && (sigma == ((Couple) couple).sigma);
- }
- return false;
- }
- /** {@inheritDoc} */
- public int hashCode() {
- return 0x7ab17c0c ^ (rho << 8) ^ sigma;
- }
- }
- /** Newcomb operator's key. */
- private static class NewKey implements Comparable<NewKey> {
- /** n value. */
- private final int n;
- /** s value. */
- private final int s;
- /** ρ value. */
- private final int rho;
- /** σ value. */
- private final int sigma;
- /** Simpleconstructor.
- * @param n n
- * @param s s
- * @param rho ρ
- * @param sigma σ
- */
- NewKey(final int n, final int s, final int rho, final int sigma) {
- this.n = n;
- this.s = s;
- this.rho = rho;
- this.sigma = sigma;
- }
- /** {@inheritDoc} */
- public int compareTo(final NewKey key) {
- int result = 1;
- if (n == key.n) {
- if (s == key.s) {
- if (rho == key.rho) {
- if (sigma < key.sigma) {
- result = -1;
- } else if (sigma == key.sigma) {
- result = 0;
- } else {
- result = 1;
- }
- } else if (rho < key.rho) {
- result = -1;
- } else {
- result = 1;
- }
- } else if (s < key.s) {
- result = -1;
- } else {
- result = 1;
- }
- } else if (n < key.n) {
- result = -1;
- }
- return result;
- }
- /** {@inheritDoc} */
- public boolean equals(final Object key) {
- if (key == this) {
- // first fast check
- return true;
- }
- if ((key != null) && (key instanceof NewKey)) {
- return (n == ((NewKey) key).n) &&
- (s == ((NewKey) key).s) &&
- (rho == ((NewKey) key).rho) &&
- (sigma == ((NewKey) key).sigma);
- }
- return false;
- }
- /** {@inheritDoc} */
- public int hashCode() {
- return 0x25baa451 ^ (n << 24) ^ (s << 16) ^ (rho << 8) ^ sigma;
- }
- }
- }