GeometryFreeCycleSlipDetector.java
/* Copyright 2002-2020 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.estimation.measurements.gnss;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import org.hipparchus.fitting.PolynomialCurveFitter;
import org.hipparchus.fitting.WeightedObservedPoint;
import org.hipparchus.util.FastMath;
import org.orekit.gnss.CombinedObservationData;
import org.orekit.gnss.CombinedObservationDataSet;
import org.orekit.gnss.Frequency;
import org.orekit.gnss.MeasurementType;
import org.orekit.gnss.ObservationDataSet;
import org.orekit.gnss.SatelliteSystem;
import org.orekit.time.AbsoluteDate;
/**
* Geometry free cycle slip detectors.
* The detector is based the algorithm given in <a
* href="https://gssc.esa.int/navipedia/index.php/Detector_based_in_carrier_phase_data:_The_geometry-free_combination">
* Detector based in carrier phase data: The geometry-free combination</a> by Zornoza and M. Hernández-Pajares. Within this class
* a second order polynomial is used to smooth the data. We consider a cycle-slip occurring if the current measurement is too
* far from the one predicted with the polynomial.
* <p>
* For building the detector, one should give a threshold and a gap time limit.
* After construction of the detectors, one can have access to a List of CycleData. Each CycleDate represents
* a link between the station (define by the RINEX file) and a satellite at a specific frequency. For each cycle data,
* one has access to the begin and end of availability, and a sorted set which contains all the date at which
* cycle-slip have been detected
* </p>
* <p>
* @author David Soulard
* @author Bryan Cazabonne
* @since 10.2
*/
public class GeometryFreeCycleSlipDetector extends AbstractCycleSlipDetector {
/** Threshold above which cycle-slip occurs. */
private final double threshold;
/**
* Constructor.
* @param dt time gap threshold between two consecutive measurement (if time between two consecutive measurement is greater than dt, a cycle slip is declared)
* @param threshold threshold above which cycle-slip occurs
* @param n number of measurement before starting
*/
public GeometryFreeCycleSlipDetector(final double dt, final double threshold, final int n) {
super(dt, n);
this.threshold = threshold;
}
/** {@inheritDoc} */
@Override
protected void manageData(final ObservationDataSet observation) {
// Extract observation data
final int prn = observation.getPrnNumber();
final AbsoluteDate date = observation.getDate();
final SatelliteSystem system = observation.getSatelliteSystem();
// Geometry-free combination of measurements
final GeometryFreeCombination geometryFree = MeasurementCombinationFactory.getGeometryFreeCombination(system);
final CombinedObservationDataSet cods = geometryFree.combine(observation);
// Initialize list of measurements
final List<CombinedObservationData> phasesGF = new ArrayList<>();
// Loop on observation data to fill lists
for (final CombinedObservationData cod : cods.getObservationData()) {
if (!Double.isNaN(cod.getValue()) && (cod.getMeasurementType() == MeasurementType.CARRIER_PHASE)) {
phasesGF.add(cod);
}
}
// Loop on Geometry-free phase measurements
for (CombinedObservationData cod : phasesGF) {
final String nameSat = setName(prn, observation.getSatelliteSystem());
// Check for cycle-slip detection
final Frequency frequency = cod.getUsedObservationData().get(0).getObservationType().getFrequency(system);
final boolean slip = cycleSlipDetection(nameSat, date, cod.getValue(), frequency);
if (!slip) {
// Update cycle slip data
cycleSlipDataSet(nameSat, date, cod.getValue(), cod.getUsedObservationData().get(0).getObservationType().getFrequency(system));
}
}
}
/**
* Compute if there is a cycle slip at an specific date.
* @param nameSat name of the satellite, on the pre-defined format (e.g.: GPS - 07 for satellite 7 of GPS constellation)
* @param currentDate the date at which we check if a cycle-slip occurs
* @param valueGF geometry free measurement
* @param frequency frequency used
* @return true if a cycle slip has been detected.
*/
private boolean cycleSlipDetection(final String nameSat, final AbsoluteDate currentDate,
final double valueGF, final Frequency frequency) {
// Access the cycle slip results to know if a cycle-slip already occurred
final List<CycleSlipDetectorResults> data = getResults();
final List<Map<Frequency, DataForDetection>> stuff = getStuffReference();
// If a cycle-slip already occurred
if (data != null) {
// Loop on cycle-slip results
for (CycleSlipDetectorResults resultGF : data) {
// Found the right cycle data
if (resultGF.getSatelliteName().compareTo(nameSat) == 0 && resultGF.getCycleSlipMap().containsKey(frequency)) {
final Map<Frequency, DataForDetection> values = stuff.get(data.indexOf(resultGF));
final DataForDetection dataForDetection = values.get(frequency);
// Check the time gap condition
final double deltaT = FastMath.abs(currentDate.durationFrom(dataForDetection.getFiguresReference()[dataForDetection.getWrite()].getDate()));
if (deltaT > getMaxTimeBeetween2Measurement()) {
resultGF.addCycleSlipDate(frequency, currentDate);
dataForDetection.resetFigures(new SlipComputationData[getMinMeasurementNumber()], valueGF, currentDate);
resultGF.setDate(frequency, currentDate);
return true;
}
// Compute the fitting polynomial if there are enough measurement since last cycle-slip
if (dataForDetection.getCanBeComputed() >= getMinMeasurementNumber()) {
final List<WeightedObservedPoint> xy = new ArrayList<>();
for (int i = 0; i < getMinMeasurementNumber(); i++) {
final SlipComputationData current = dataForDetection.getFiguresReference()[i];
xy.add(new WeightedObservedPoint(1.0, current.getDate().durationFrom(currentDate),
current.getValue()));
}
final PolynomialCurveFitter fitting = PolynomialCurveFitter.create(2);
// Check if there is a cycle_slip
if (FastMath.abs(fitting.fit(xy)[0] - valueGF) > threshold) {
resultGF.addCycleSlipDate(frequency, currentDate);
dataForDetection.resetFigures(new SlipComputationData[getMinMeasurementNumber()], valueGF, currentDate);
resultGF.setDate(frequency, currentDate);
return true;
}
} else {
break;
}
}
}
}
// No cycle-slip
return false;
}
}