HarmonicAccelerationModel.java
/* Copyright 2002-2020 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.forces.empirical;
import org.hipparchus.RealFieldElement;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathUtils;
import org.orekit.propagation.FieldSpacecraftState;
import org.orekit.propagation.SpacecraftState;
import org.orekit.time.AbsoluteDate;
import org.orekit.utils.ParameterDriver;
/** Harmonic acceleration model.
* @since 10.3
* @author Luc Maisonobe
* @author Bryan Cazabonne
*/
public class HarmonicAccelerationModel implements AccelerationModel {
/** Amplitude scaling factor.
* <p>
* 2⁻²⁰ is the order of magnitude of third body perturbing acceleration.
* </p>
* <p>
* We use a power of 2 to avoid numeric noise introduction
* in the multiplications/divisions sequences.
* </p>
*/
private static final double AMPLITUDE_SCALE = FastMath.scalb(1.0, -20);
/** Phase scaling factor.
* <p>
* 2⁻²³ is the order of magnitude of an angle corresponding to one meter along
* track for a Low Earth Orbiting satellite.
* </p>
* <p>
* We use a power of 2 to avoid numeric noise introduction
* in the multiplications/divisions sequences.
* </p>
*/
private static final double PHASE_SCALE = FastMath.scalb(1.0, -23);
/** Drivers for the parameters. */
private final ParameterDriver[] drivers;
/** Reference date for computing phase. */
private AbsoluteDate referenceDate;
/** Angular frequency ω = 2kπ/T. */
private final double omega;
/** Simple constructor.
* @param prefix prefix to use for parameter drivers
* @param referenceDate reference date for computing polynomials, if null
* the reference date will be automatically set at propagation start
* @param fundamentalPeriod fundamental period (typically set to initial orbit
* {@link org.orekit.orbits.Orbit#getKeplerianPeriod() Keplerian period})
* @param harmonicMultiplier multiplier to compute harmonic period from
* fundamental period)
*/
public HarmonicAccelerationModel(final String prefix, final AbsoluteDate referenceDate,
final double fundamentalPeriod, final int harmonicMultiplier) {
this.referenceDate = referenceDate;
this.omega = harmonicMultiplier * MathUtils.TWO_PI / fundamentalPeriod;
this.drivers = new ParameterDriver[] {
new ParameterDriver(prefix + " γ",
0.0, AMPLITUDE_SCALE, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY),
new ParameterDriver(prefix + " φ",
0.0, PHASE_SCALE, -MathUtils.TWO_PI, MathUtils.TWO_PI),
};
}
/** {@inheritDoc} */
@Override
public void init(final SpacecraftState initialState, final AbsoluteDate target) {
if (referenceDate == null) {
referenceDate = initialState.getDate();
}
}
/** {@inheritDoc} */
@Override
public double signedAmplitude(final SpacecraftState state,
final double[] parameters) {
final double dt = state.getDate().durationFrom(referenceDate);
return parameters[0] * FastMath.sin(dt * omega + parameters[1]);
}
/** {@inheritDoc} */
@Override
public <T extends RealFieldElement<T>> T signedAmplitude(final FieldSpacecraftState<T> state,
final T[] parameters) {
final T dt = state.getDate().durationFrom(referenceDate);
return parameters[0].multiply(dt.multiply(omega).add(parameters[1]).sin());
}
/** {@inheritDoc} */
@Override
public ParameterDriver[] getParametersDrivers() {
return drivers.clone();
}
}