LenseThirringRelativity.java
/* Copyright 2002-2020 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.forces.gravity;
import java.util.stream.Stream;
import org.hipparchus.Field;
import org.hipparchus.RealFieldElement;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.util.FastMath;
import org.orekit.forces.AbstractForceModel;
import org.orekit.frames.FieldTransform;
import org.orekit.frames.Frame;
import org.orekit.frames.Transform;
import org.orekit.propagation.FieldSpacecraftState;
import org.orekit.propagation.SpacecraftState;
import org.orekit.propagation.events.EventDetector;
import org.orekit.propagation.events.FieldEventDetector;
import org.orekit.utils.Constants;
import org.orekit.utils.FieldPVCoordinates;
import org.orekit.utils.PVCoordinates;
import org.orekit.utils.ParameterDriver;
/**
* Lense-Thirring post-Newtonian correction force due to general relativity.
* <p>
* Lense-Thirring term causes a precession of the orbital plane at a rate of
* the order of 0.8 mas per year (geostationary) to 180 mas per year (low orbit).
* </p>
* @see "Petit, G. and Luzum, B. (eds.), IERS Conventions (2010), Chapter 10,
* General relativistic models for space-time coordinates and equations of motion (2010)"
*
* @author Bryan Cazabonne
* @since 10.3
*/
public class LenseThirringRelativity extends AbstractForceModel {
/** Intensity of the Earth's angular momentum per unit mass [m²/s]. */
private static final double J = 9.8e8;
/** Central attraction scaling factor.
* <p>
* We use a power of 2 to avoid numeric noise introduction
* in the multiplications/divisions sequences.
* </p>
*/
private static final double MU_SCALE = FastMath.scalb(1.0, 32);
/** Driver for gravitational parameter. */
private final ParameterDriver gmParameterDriver;
/** Central body frame. */
private final Frame bodyFrame;
/**
* Constructor.
* @param gm Earth's gravitational parameter.
* @param bodyFrame central body frame
*/
public LenseThirringRelativity(final double gm, final Frame bodyFrame) {
gmParameterDriver = new ParameterDriver(NewtonianAttraction.CENTRAL_ATTRACTION_COEFFICIENT,
gm, MU_SCALE,
0.0, Double.POSITIVE_INFINITY);
this.bodyFrame = bodyFrame;
}
/** {@inheritDoc} */
@Override
public boolean dependsOnPositionOnly() {
return false;
}
/** {@inheritDoc} */
@Override
public Vector3D acceleration(final SpacecraftState s, final double[] parameters) {
// Useful constant
final double c2 = Constants.SPEED_OF_LIGHT * Constants.SPEED_OF_LIGHT;
// Earth's gravitational parameter
final double gm = parameters[0];
// Satellite position and velocity with respect to the Earth
final PVCoordinates pv = s.getPVCoordinates();
final Vector3D p = pv.getPosition();
final Vector3D v = pv.getVelocity();
// Radius
final double r = p.getNorm();
final double r2 = r * r;
// Earth’s angular momentum per unit mass
final Transform t = bodyFrame.getTransformTo(s.getFrame(), s.getDate());
final Vector3D j = t.transformVector(Vector3D.PLUS_K).scalarMultiply(J);
// Eq. 10.12
return new Vector3D(3.0 * p.dotProduct(j) / r2,
p.crossProduct(v),
1.0,
v.crossProduct(j))
.scalarMultiply((2.0 * gm) / (r2 * r * c2));
}
/** {@inheritDoc} */
@Override
public <T extends RealFieldElement<T>> FieldVector3D<T> acceleration(final FieldSpacecraftState<T> s,
final T[] parameters) {
// Useful constant
final double c2 = Constants.SPEED_OF_LIGHT * Constants.SPEED_OF_LIGHT;
// Earth's gravitational parameter
final T gm = parameters[0];
// Satellite position and velocity with respect to the Earth
final FieldPVCoordinates<T> pv = s.getPVCoordinates();
final FieldVector3D<T> p = pv.getPosition();
final FieldVector3D<T> v = pv.getVelocity();
// Radius
final T r = p.getNorm();
final T r2 = r.multiply(r);
// Earth’s angular momentum per unit mass
final FieldTransform<T> t = bodyFrame.getTransformTo(s.getFrame(), s.getDate());
final FieldVector3D<T> j = t.transformVector(Vector3D.PLUS_K).scalarMultiply(J);
return new FieldVector3D<>(p.dotProduct(j).multiply(3.0).divide(r2),
p.crossProduct(v),
r.getField().getOne(),
v.crossProduct(j))
.scalarMultiply(gm.multiply(2.0).divide(r2.multiply(r).multiply(c2)));
}
/** {@inheritDoc} */
@Override
public Stream<EventDetector> getEventsDetectors() {
return Stream.empty();
}
/** {@inheritDoc} */
@Override
public <T extends RealFieldElement<T>> Stream<FieldEventDetector<T>> getFieldEventsDetectors(final Field<T> field) {
return Stream.empty();
}
/** {@inheritDoc} */
@Override
public ParameterDriver[] getParametersDrivers() {
return new ParameterDriver[] {
gmParameterDriver
};
}
}