FieldDSSTThirdBodyContext.java
/* Copyright 2002-2020 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.propagation.semianalytical.dsst.forces;
import org.hipparchus.Field;
import org.hipparchus.RealFieldElement;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.util.CombinatoricsUtils;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathArrays;
import org.orekit.bodies.CelestialBody;
import org.orekit.propagation.semianalytical.dsst.utilities.CoefficientsFactory;
import org.orekit.propagation.semianalytical.dsst.utilities.FieldAuxiliaryElements;
import org.orekit.propagation.semianalytical.dsst.utilities.UpperBounds;
/**
* This class is a container for the common "field" parameters used in {@link DSSTThirdBody}.
* <p>
* It performs parameters initialization at each integration step for the third
* body attraction perturbation.
* <p>
* @author Bryan Cazabonne
* @since 10.0
*/
class FieldDSSTThirdBodyContext<T extends RealFieldElement <T>> extends FieldForceModelContext<T> {
/** Max power for summation. */
private static final int MAX_POWER = 22;
/** Truncation tolerance for big, eccentric orbits. */
private static final double BIG_TRUNCATION_TOLERANCE = 1.e-1;
/** Truncation tolerance for small orbits. */
private static final double SMALL_TRUNCATION_TOLERANCE = 1.9e-6;
/** Maximum power for eccentricity used in short periodic computation. */
private static final int MAX_ECCPOWER_SP = 4;
/** Max power for a/R3 in the serie expansion. */
private int maxAR3Pow;
/** Max power for e in the serie expansion. */
private int maxEccPow;
/** a / R3 up to power maxAR3Pow. */
private T[] aoR3Pow;
/** Max power for e in the serie expansion (for short periodics). */
private int maxEccPowShort;
/** Max frequency of F. */
private int maxFreqF;
/** Qns coefficients. */
private T[][] Qns;
/** Standard gravitational parameter μ for the body in m³/s². */
private final T gm;
/** Distance from center of mass of the central body to the 3rd body. */
private T R3;
/** A = sqrt(μ * a). */
private final T A;
// Direction cosines of the symmetry axis
/** α. */
private final T alpha;
/** β. */
private final T beta;
/** γ. */
private final T gamma;
/** B². */
private final T BB;
/** B³. */
private final T BBB;
/** Χ = 1 / sqrt(1 - e²) = 1 / B. */
private final T X;
/** Χ². */
private final T XX;
/** Χ³. */
private final T XXX;
/** -2 * a / A. */
private final T m2aoA;
/** B / A. */
private final T BoA;
/** 1 / (A * B). */
private final T ooAB;
/** -C / (2 * A * B). */
private final T mCo2AB;
/** B / A(1 + B). */
private final T BoABpo;
/** mu3 / R3. */
private final T muoR3;
/** b = 1 / (1 + sqrt(1 - e²)) = 1 / (1 + B).*/
private final T b;
/** h * Χ³. */
private final T hXXX;
/** k * Χ³. */
private final T kXXX;
/** Keplerian mean motion. */
private final T motion;
/**
* Simple constructor.
*
* @param auxiliaryElements auxiliary elements related to the current orbit
* @param thirdBody body the 3rd body to consider
* @param parameters values of the force model parameters
*/
FieldDSSTThirdBodyContext(final FieldAuxiliaryElements<T> auxiliaryElements,
final CelestialBody thirdBody,
final T[] parameters) {
super(auxiliaryElements);
// Field for array building
final Field<T> field = auxiliaryElements.getDate().getField();
final T zero = field.getZero();
final T mu = parameters[1];
A = FastMath.sqrt(mu.multiply(auxiliaryElements.getSma()));
this.gm = parameters[0];
// Keplerian mean motion
final T absA = FastMath.abs(auxiliaryElements.getSma());
motion = FastMath.sqrt(mu.divide(absA)).divide(absA);
// Distance from center of mass of the central body to the 3rd body
final FieldVector3D<T> bodyPos = thirdBody.getPVCoordinates(auxiliaryElements.getDate(), auxiliaryElements.getFrame()).getPosition();
R3 = bodyPos.getNorm();
// Direction cosines
final FieldVector3D<T> bodyDir = bodyPos.normalize();
alpha = (T) bodyDir.dotProduct(auxiliaryElements.getVectorF());
beta = (T) bodyDir.dotProduct(auxiliaryElements.getVectorG());
gamma = (T) bodyDir.dotProduct(auxiliaryElements.getVectorW());
//Χ<sup>-2</sup>.
BB = auxiliaryElements.getB().multiply(auxiliaryElements.getB());
//Χ<sup>-3</sup>.
BBB = BB.multiply(auxiliaryElements.getB());
//b = 1 / (1 + B)
b = auxiliaryElements.getB().add(1.).reciprocal();
// Χ
X = auxiliaryElements.getB().reciprocal();
XX = X.multiply(X);
XXX = X.multiply(XX);
// -2 * a / A
m2aoA = auxiliaryElements.getSma().multiply(-2.).divide(A);
// B / A
BoA = auxiliaryElements.getB().divide(A);
// 1 / AB
ooAB = (A.multiply(auxiliaryElements.getB())).reciprocal();
// -C / 2AB
mCo2AB = auxiliaryElements.getC().multiply(ooAB).divide(2.).negate();
// B / A(1 + B)
BoABpo = BoA.divide(auxiliaryElements.getB().add(1.));
// mu3 / R3
muoR3 = R3.divide(gm).reciprocal();
//h * Χ³
hXXX = XXX.multiply(auxiliaryElements.getH());
//k * Χ³
kXXX = XXX.multiply(auxiliaryElements.getK());
// Truncation tolerance.
final T aoR3 = auxiliaryElements.getSma().divide(R3);
final double tol = ( aoR3.getReal() > .3 || (aoR3.getReal() > .15 && auxiliaryElements.getEcc().getReal() > .25) ) ? BIG_TRUNCATION_TOLERANCE : SMALL_TRUNCATION_TOLERANCE;
// Utilities for truncation
// Set a lower bound for eccentricity
final T eo2 = FastMath.max(zero.add(0.0025), auxiliaryElements.getEcc().divide(2.));
final T x2o2 = XX.divide(2.);
final T[] eccPwr = MathArrays.buildArray(field, MAX_POWER);
final T[] chiPwr = MathArrays.buildArray(field, MAX_POWER);
eccPwr[0] = zero.add(1.);
chiPwr[0] = X;
for (int i = 1; i < MAX_POWER; i++) {
eccPwr[i] = eccPwr[i - 1].multiply(eo2);
chiPwr[i] = chiPwr[i - 1].multiply(x2o2);
}
// Auxiliary quantities.
final T ao2rxx = aoR3.divide(XX.multiply(2.));
T xmuarn = ao2rxx.multiply(ao2rxx).multiply(gm).divide(X.multiply(R3));
T term = zero;
// Compute max power for a/R3 and e.
maxAR3Pow = 2;
maxEccPow = 0;
int n = 2;
int m = 2;
int nsmd2 = 0;
do {
term = xmuarn.multiply((CombinatoricsUtils.factorialDouble(n + m) / (CombinatoricsUtils.factorialDouble(nsmd2) * CombinatoricsUtils.factorialDouble(nsmd2 + m))) *
(CombinatoricsUtils.factorialDouble(n + m + 1) / (CombinatoricsUtils.factorialDouble(m) * CombinatoricsUtils.factorialDouble(n + 1))) *
(CombinatoricsUtils.factorialDouble(n - m + 1) / CombinatoricsUtils.factorialDouble(n + 1))).
multiply(eccPwr[m]).multiply(UpperBounds.getDnl(XX, chiPwr[m], n + 2, m));
if (term.getReal() < tol) {
if (m == 0) {
break;
} else if (m < 2) {
xmuarn = xmuarn.multiply(ao2rxx);
m = 0;
n++;
nsmd2++;
} else {
m -= 2;
nsmd2++;
}
} else {
maxAR3Pow = n;
maxEccPow = FastMath.max(m, maxEccPow);
xmuarn = xmuarn.multiply(ao2rxx);
m++;
n++;
}
} while (n < MAX_POWER);
maxEccPow = FastMath.min(maxAR3Pow, maxEccPow);
// allocate the array aoR3Pow
aoR3Pow = MathArrays.buildArray(field, maxAR3Pow + 1);
aoR3Pow[0] = field.getOne();
for (int i = 1; i <= maxAR3Pow; i++) {
aoR3Pow[i] = aoR3.multiply(aoR3Pow[i - 1]);
}
maxFreqF = maxAR3Pow + 1;
maxEccPowShort = MAX_ECCPOWER_SP;
Qns = CoefficientsFactory.computeQns(gamma, maxAR3Pow, FastMath.max(maxEccPow, maxEccPowShort));
}
/** Get A = sqrt(μ * a).
* @return A
*/
public T getA() {
return A;
}
/** Get direction cosine α for central body.
* @return α
*/
public T getAlpha() {
return alpha;
}
/** Get direction cosine β for central body.
* @return β
*/
public T getBeta() {
return beta;
}
/** Get direction cosine γ for central body.
* @return γ
*/
public T getGamma() {
return gamma;
}
/** Get B².
* @return B²
*/
public T getBB() {
return BB;
}
/** Get B³.
* @return B³
*/
public T getBBB() {
return BBB;
}
/** Get b = 1 / (1 + sqrt(1 - e²)) = 1 / (1 + B).
* @return b
*/
public T getb() {
return b;
}
/** Get Χ = 1 / sqrt(1 - e²) = 1 / B.
* @return Χ
*/
public T getX() {
return X;
}
/** Get m2aoA = -2 * a / A.
* @return m2aoA
*/
public T getM2aoA() {
return m2aoA;
}
/** Get B / A.
* @return BoA
*/
public T getBoA() {
return BoA;
}
/** Get ooAB = 1 / (A * B).
* @return ooAB
*/
public T getOoAB() {
return ooAB;
}
/** Get mCo2AB = -C / 2AB.
* @return mCo2AB
*/
public T getMCo2AB() {
return mCo2AB;
}
/** Get BoABpo = B / A(1 + B).
* @return BoABpo
*/
public T getBoABpo() {
return BoABpo;
}
/** Get muoR3 = mu3 / R3.
* @return muoR3
*/
public T getMuoR3() {
return muoR3;
}
/** Get hXXX = h * Χ³.
* @return hXXX
*/
public T getHXXX() {
return hXXX;
}
/** Get kXXX = h * Χ³.
* @return kXXX
*/
public T getKXXX() {
return kXXX;
}
/** Get the value of max power for a/R3 in the serie expansion.
* @return maxAR3Pow
*/
public int getMaxAR3Pow() {
return maxAR3Pow;
}
/** Get the value of max power for e in the serie expansion.
* @return maxEccPow
*/
public int getMaxEccPow() {
return maxEccPow;
}
/** Get the value of a / R3 up to power maxAR3Pow.
* @return aoR3Pow
*/
public T[] getAoR3Pow() {
return aoR3Pow;
}
/** Get the value of max frequency of F.
* @return maxFreqF
*/
public int getMaxFreqF() {
return maxFreqF;
}
/** Get the Keplerian mean motion.
* <p>The Keplerian mean motion is computed directly from semi major axis
* and central acceleration constant.</p>
* @return Keplerian mean motion in radians per second
*/
public T getMeanMotion() {
return motion;
}
/** Get the value of Qns coefficients.
* @return Qns
*/
public T[][] getQns() {
return Qns;
}
}