EskfMeasurementHandler.java
/* Copyright 2002-2022 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.estimation.sequential;
import java.util.List;
import org.hipparchus.exception.MathRuntimeException;
import org.hipparchus.filtering.kalman.ProcessEstimate;
import org.hipparchus.filtering.kalman.extended.ExtendedKalmanFilter;
import org.hipparchus.linear.MatrixUtils;
import org.hipparchus.linear.RealMatrix;
import org.orekit.errors.OrekitException;
import org.orekit.estimation.measurements.ObservedMeasurement;
import org.orekit.estimation.measurements.PV;
import org.orekit.estimation.measurements.Position;
import org.orekit.propagation.SpacecraftState;
import org.orekit.propagation.sampling.OrekitStepHandler;
import org.orekit.propagation.sampling.OrekitStepInterpolator;
import org.orekit.time.AbsoluteDate;
/** {@link org.orekit.propagation.sampling.OrekitStepHandler Step handler} picking up
* {@link ObservedMeasurement measurements} for the {@link SemiAnalyticalKalmanEstimator}.
* @author Julie Bayard
* @author Bryan Cazabonne
* @author Maxime Journot
* @since 11.1
*/
public class EskfMeasurementHandler implements OrekitStepHandler {
/** Least squares model. */
private final SemiAnalyticalKalmanModel model;
/** Extended Kalman Filter. */
private final ExtendedKalmanFilter<MeasurementDecorator> filter;
/** Underlying measurements. */
private final List<ObservedMeasurement<?>> observedMeasurements;
/** Index of the next measurement component in the model. */
private int index;
/** Reference date. */
private AbsoluteDate referenceDate;
/** Observer to retrieve current estimation info. */
private KalmanObserver observer;
/** Simple constructor.
* @param model semi-analytical kalman model
* @param filter kalman filter instance
* @param observedMeasurements list of observed measurements
* @param referenceDate reference date
*/
public EskfMeasurementHandler(final SemiAnalyticalKalmanModel model,
final ExtendedKalmanFilter<MeasurementDecorator> filter,
final List<ObservedMeasurement<?>> observedMeasurements,
final AbsoluteDate referenceDate) {
this.model = model;
this.filter = filter;
this.observer = model.getObserver();
this.observedMeasurements = observedMeasurements;
this.referenceDate = referenceDate;
}
/** {@inheritDoc} */
@Override
public void init(final SpacecraftState s0, final AbsoluteDate t) {
this.index = 0;
// Initialize short periodic terms.
model.initializeShortPeriodicTerms(s0);
model.updateShortPeriods(s0);
}
/** {@inheritDoc} */
@Override
public void handleStep(final OrekitStepInterpolator interpolator) {
// Current date
final AbsoluteDate currentDate = interpolator.getCurrentState().getDate();
// Update the short period terms with the current MEAN state
model.updateShortPeriods(interpolator.getCurrentState());
// Process the measurements between previous step and current step
while (index < observedMeasurements.size() && observedMeasurements.get(index).getDate().compareTo(currentDate) < 0) {
try {
// Update the norminal state with the interpolated parameters
model.updateNominalSpacecraftState(interpolator.getInterpolatedState(observedMeasurements.get(index).getDate()));
// Process the current observation
final ProcessEstimate estimate = filter.estimationStep(decorate(observedMeasurements.get(index)));
// Finalize the estimation
model.finalizeEstimation(observedMeasurements.get(index), estimate);
// Call the observer if the user add one
if (observer != null) {
observer.evaluationPerformed(model);
}
} catch (MathRuntimeException mrte) {
throw new OrekitException(mrte);
}
// Increment the measurement index
index += 1;
}
// Reset the initial state of the propagator
model.finalizeOperationsObservationGrid();
}
/** Decorate an observed measurement.
* <p>
* The "physical" measurement noise matrix is the covariance matrix of the measurement.
* Normalizing it consists in applying the following equation: Rn[i,j] = R[i,j]/σ[i]/σ[j]
* Thus the normalized measurement noise matrix is the matrix of the correlation coefficients
* between the different components of the measurement.
* </p>
* @param observedMeasurement the measurement
* @return decorated measurement
*/
private MeasurementDecorator decorate(final ObservedMeasurement<?> observedMeasurement) {
// Normalized measurement noise matrix contains 1 on its diagonal and correlation coefficients
// of the measurement on its non-diagonal elements.
// Indeed, the "physical" measurement noise matrix is the covariance matrix of the measurement
// Normalizing it leaves us with the matrix of the correlation coefficients
final RealMatrix covariance;
if (observedMeasurement instanceof PV) {
// For PV measurements we do have a covariance matrix and thus a correlation coefficients matrix
final PV pv = (PV) observedMeasurement;
covariance = MatrixUtils.createRealMatrix(pv.getCorrelationCoefficientsMatrix());
} else if (observedMeasurement instanceof Position) {
// For Position measurements we do have a covariance matrix and thus a correlation coefficients matrix
final Position position = (Position) observedMeasurement;
covariance = MatrixUtils.createRealMatrix(position.getCorrelationCoefficientsMatrix());
} else {
// For other measurements we do not have a covariance matrix.
// Thus the correlation coefficients matrix is an identity matrix.
covariance = MatrixUtils.createRealIdentityMatrix(observedMeasurement.getDimension());
}
return new MeasurementDecorator(observedMeasurement, covariance, referenceDate);
}
}