STMEquations.java
/* Copyright 2002-2022 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.propagation.numerical.cr3bp;
import java.util.Arrays;
import org.hipparchus.analysis.differentiation.DerivativeStructure;
import org.hipparchus.linear.Array2DRowRealMatrix;
import org.hipparchus.linear.RealMatrix;
import org.orekit.bodies.CR3BPSystem;
import org.orekit.propagation.SpacecraftState;
import org.orekit.propagation.integration.AdditionalDerivativesProvider;
import org.orekit.time.AbsoluteDate;
/** Class calculating the state transition matrix coefficient for CR3BP Computation.
* @see "Dynamical systems, the three-body problem, and space mission design, Koon, Lo, Marsden, Ross"
* @author Vincent Mouraux
* @since 10.2
*/
@SuppressWarnings("deprecation")
public class STMEquations
implements AdditionalDerivativesProvider,
org.orekit.propagation.integration.AdditionalEquations {
/** Matrix Dimension. */
private static final int DIM = 6;
/** Mass ratio of the considered CR3BP System. */
private final CR3BPSystem syst;
/** Name of the equations. */
private final String name;
/** Potential Hessian Matrix. */
private final double[][] jacobian = new double[DIM][DIM];
/** Simple constructor.
* @param syst CR3BP System considered
*/
public STMEquations(final CR3BPSystem syst) {
this.syst = syst;
this.name = "stmEquations";
// Jacobian constant values initialization
for (int j = 0; j < jacobian.length; ++j) {
Arrays.fill(jacobian[j], 0.0);
}
jacobian[0][3] = 1.0;
jacobian[1][4] = 1.0;
jacobian[2][5] = 1.0;
jacobian[3][4] = 2.0;
jacobian[4][3] = -2.0;
}
/** Method adding the standard initial values of the additional state to the initial spacecraft state.
* @param s Initial state of the system
* @return s Initial augmented (with the additional equations) state
*/
public SpacecraftState setInitialPhi(final SpacecraftState s) {
final int stateDimension = 36;
final double[] phi = new double[stateDimension];
for (int i = 0; i < stateDimension; i = i + 7) {
phi[i] = 1.0;
}
return s.addAdditionalState(name, phi);
}
/** {@inheritDoc} */
public void init(final SpacecraftState initialState, final AbsoluteDate target) {
// FIXME: remove in 12.0 when AdditionalEquations is removed
AdditionalDerivativesProvider.super.init(initialState, target);
}
/** {@inheritDoc} */
public double[] computeDerivatives(final SpacecraftState s, final double[] pDot) {
// FIXME: remove in 12.0 when AdditionalEquations is removed
System.arraycopy(derivatives(s), 0, pDot, 0, pDot.length);
return null;
}
/** {@inheritDoc} */
public double[] derivatives(final SpacecraftState s) {
// State Transition Matrix
final double[] phi = s.getAdditionalState(getName());
final double[] dPhi = new double[phi.length];
// Spacecraft Potential
final DerivativeStructure potential = new CR3BPForceModel(syst).getPotential(s);
// Potential derivatives
final double[] dU = potential.getAllDerivatives();
// second order derivatives index
final int idXX = potential.getFactory().getCompiler().getPartialDerivativeIndex(2, 0, 0);
final int idXY = potential.getFactory().getCompiler().getPartialDerivativeIndex(1, 1, 0);
final int idXZ = potential.getFactory().getCompiler().getPartialDerivativeIndex(1, 0, 1);
final int idYY = potential.getFactory().getCompiler().getPartialDerivativeIndex(0, 2, 0);
final int idYZ = potential.getFactory().getCompiler().getPartialDerivativeIndex(0, 1, 1);
final int idZZ = potential.getFactory().getCompiler().getPartialDerivativeIndex(0, 0, 2);
// New Jacobian values
jacobian[3][0] = dU[idXX];
jacobian[4][1] = dU[idYY];
jacobian[5][2] = dU[idZZ];
jacobian[3][1] = dU[idXY];
jacobian[4][0] = jacobian[3][1];
jacobian[3][2] = dU[idXZ];
jacobian[5][0] = jacobian[3][2];
jacobian[4][2] = dU[idYZ];
jacobian[5][1] = jacobian[4][2];
// STM derivatives computation : dPhi = Jacobian * Phi if both dPhi and Phi are defined as Matrix
for (int k = 0; k < DIM; k++) {
for (int l = 0; l < DIM; l++) {
for (int i = 0; i < DIM; i++) {
dPhi[DIM * k + l] =
dPhi[DIM * k + l] + jacobian[k][i] * phi[DIM * i + l];
}
}
}
return dPhi;
}
/** {@inheritDoc} */
public String getName() {
return name;
}
/** {@inheritDoc} */
@Override
public int getDimension() {
return DIM * DIM;
}
/** Method returning the State Transition Matrix.
* @param s SpacecraftState of the system
* @return phiM State Transition Matrix
*/
public RealMatrix getStateTransitionMatrix(final SpacecraftState s) {
final double[][] phi2dA = new double[DIM][DIM];
final double[] stm = s.getAdditionalState(getName());
for (int i = 0; i < DIM; i++) {
for (int j = 0; j < 6; j++) {
phi2dA[i][j] = stm[DIM * i + j];
}
}
return new Array2DRowRealMatrix(phi2dA, false);
}
}