DSSTPartialDerivativesEquations.java
/* Copyright 2002-2022 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.propagation.semianalytical.dsst;
import java.util.IdentityHashMap;
import java.util.Map;
import org.hipparchus.analysis.differentiation.Gradient;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitMessages;
import org.orekit.propagation.FieldSpacecraftState;
import org.orekit.propagation.PropagationType;
import org.orekit.propagation.SpacecraftState;
import org.orekit.propagation.integration.AdditionalDerivativesProvider;
import org.orekit.propagation.semianalytical.dsst.forces.DSSTForceModel;
import org.orekit.propagation.semianalytical.dsst.utilities.FieldAuxiliaryElements;
import org.orekit.time.AbsoluteDate;
import org.orekit.utils.ParameterDriver;
import org.orekit.utils.ParameterDriversList;
/** {@link AdditionalDerivativesProvider derivatives provider} computing the partial derivatives
* of the state (orbit) with respect to initial state and force models parameters.
* <p>
* This set of equations are automatically added to a {@link DSSTPropagator DSST propagator}
* in order to compute partial derivatives of the orbit along with the orbit itself. This is
* useful for example in orbit determination applications.
* </p>
* <p>
* The partial derivatives with respect to initial state are dimension 6 (orbit only).
* </p>
* <p>
* The partial derivatives with respect to force models parameters has a dimension
* equal to the number of selected parameters. Parameters selection is implemented at
* {@link DSSTForceModel DSST force models} level. Users must retrieve a {@link ParameterDriver
* parameter driver} by looping on all drivers using {@link DSSTForceModel#getParametersDrivers()}
* and then select it by calling {@link ParameterDriver#setSelected(boolean) setSelected(true)}.
* </p>
* @author Bryan Cazabonne
* @since 10.0
* @deprecated as of 11.1, replaced by {@link
* org.orekit.propagation.Propagator#setupMatricesComputation(String,
* org.hipparchus.linear.RealMatrix, org.orekit.utils.DoubleArrayDictionary)}
*/
@Deprecated
public class DSSTPartialDerivativesEquations
implements AdditionalDerivativesProvider,
org.orekit.propagation.integration.AdditionalEquations {
/** Retrograde factor I.
* <p>
* DSST model needs equinoctial orbit as internal representation.
* Classical equinoctial elements have discontinuities when inclination
* is close to zero. In this representation, I = +1. <br>
* To avoid this discontinuity, another representation exists and equinoctial
* elements can be expressed in a different way, called "retrograde" orbit.
* This implies I = -1. <br>
* As Orekit doesn't implement the retrograde orbit, I is always set to +1.
* But for the sake of consistency with the theory, the retrograde factor
* has been kept in the formulas.
* </p>
*/
private static final int I = 1;
/** Propagator computing state evolution. */
private final DSSTPropagator propagator;
/** Selected parameters for Jacobian computation. */
private ParameterDriversList selected;
/** Parameters map. */
private Map<ParameterDriver, Integer> map;
/** Name. */
private final String name;
/** Flag for Jacobian matrices initialization. */
private boolean initialized;
/** Type of the orbit used for the propagation.*/
private PropagationType propagationType;
/** Simple constructor.
* <p>
* Upon construction, this set of equations is <em>automatically</em> added to
* the propagator by calling its {@link
* DSSTPropagator#addAdditionalDerivativesProvider(AdditionalDerivativesProvider)} method. So
* there is no need to call this method explicitly for these equations.
* </p>
* @param name name of the partial derivatives equations
* @param propagator the propagator that will handle the orbit propagation
* @param propagationType type of the orbit used for the propagation (mean or osculating)
*/
public DSSTPartialDerivativesEquations(final String name,
final DSSTPropagator propagator,
final PropagationType propagationType) {
this.name = name;
this.selected = null;
this.map = null;
this.propagator = propagator;
this.initialized = false;
this.propagationType = propagationType;
propagator.addAdditionalDerivativesProvider(this);
}
/** {@inheritDoc} */
public String getName() {
return name;
}
/** {@inheritDoc} */
@Override
public int getDimension() {
freezeParametersSelection();
return 6 * (6 + selected.getNbParams());
}
/** Freeze the selected parameters from the force models.
*/
private void freezeParametersSelection() {
if (selected == null) {
// first pass: gather all parameters, binding similar names together
selected = new ParameterDriversList();
for (final DSSTForceModel provider : propagator.getAllForceModels()) {
for (final ParameterDriver driver : provider.getParametersDrivers()) {
selected.add(driver);
}
}
// second pass: now that shared parameter names are bound together,
// their selections status have been synchronized, we can filter them
selected.filter(true);
// third pass: sort parameters lexicographically
selected.sort();
// fourth pass: set up a map between parameters drivers and matrices columns
map = new IdentityHashMap<ParameterDriver, Integer>();
int parameterIndex = 0;
for (final ParameterDriver selectedDriver : selected.getDrivers()) {
for (final DSSTForceModel provider : propagator.getAllForceModels()) {
for (final ParameterDriver driver : provider.getParametersDrivers()) {
if (driver.getName().equals(selectedDriver.getName())) {
map.put(driver, parameterIndex);
}
}
}
++parameterIndex;
}
}
}
/** Set the initial value of the Jacobian with respect to state and parameter.
* <p>
* This method is equivalent to call {@link #setInitialJacobians(SpacecraftState,
* double[][], double[][])} with dYdY0 set to the identity matrix and dYdP set
* to a zero matrix.
* </p>
* <p>
* The force models parameters for which partial derivatives are desired,
* <em>must</em> have been {@link ParameterDriver#setSelected(boolean) selected}
* before this method is called, so proper matrices dimensions are used.
* </p>
* @param s0 initial state
* @return state with initial Jacobians added
*/
public SpacecraftState setInitialJacobians(final SpacecraftState s0) {
freezeParametersSelection();
final int stateDimension = 6;
final double[][] dYdY0 = new double[stateDimension][stateDimension];
final double[][] dYdP = new double[stateDimension][selected.getNbParams()];
for (int i = 0; i < stateDimension; ++i) {
dYdY0[i][i] = 1.0;
}
return setInitialJacobians(s0, dYdY0, dYdP);
}
/** Set the initial value of the Jacobian with respect to state and parameter.
* <p>
* The returned state must be added to the propagator (it is not done
* automatically, as the user may need to add more states to it).
* </p>
* <p>
* The force models parameters for which partial derivatives are desired,
* <em>must</em> have been {@link ParameterDriver#setSelected(boolean) selected}
* before this method is called, and the {@code dY1dP} matrix dimension <em>must</em>
* be consistent with the selection.
* </p>
* @param s1 current state
* @param dY1dY0 Jacobian of current state at time t₁ with respect
* to state at some previous time t₀ (must be 6x6)
* @param dY1dP Jacobian of current state at time t₁ with respect
* to parameters (may be null if no parameters are selected)
* @return state with initial Jacobians added
*/
public SpacecraftState setInitialJacobians(final SpacecraftState s1,
final double[][] dY1dY0, final double[][] dY1dP) {
freezeParametersSelection();
// Check dimensions
final int stateDim = dY1dY0.length;
if (stateDim != 6 || stateDim != dY1dY0[0].length) {
throw new OrekitException(OrekitMessages.STATE_JACOBIAN_NOT_6X6,
stateDim, dY1dY0[0].length);
}
if (dY1dP != null && stateDim != dY1dP.length) {
throw new OrekitException(OrekitMessages.STATE_AND_PARAMETERS_JACOBIANS_ROWS_MISMATCH,
stateDim, dY1dP.length);
}
if (dY1dP == null && selected.getNbParams() != 0 ||
dY1dP != null && selected.getNbParams() != dY1dP[0].length) {
throw new OrekitException(new OrekitException(OrekitMessages.INITIAL_MATRIX_AND_PARAMETERS_NUMBER_MISMATCH,
dY1dP == null ? 0 : dY1dP[0].length, selected.getNbParams()));
}
// store the matrices as a single dimension array
initialized = true;
final DSSTJacobiansMapper mapper = getMapper();
final double[] p = new double[mapper.getAdditionalStateDimension()];
mapper.setInitialJacobians(s1, dY1dY0, dY1dP, p);
// set value in propagator
return s1.addAdditionalState(name, p);
}
/** Get a mapper between two-dimensional Jacobians and one-dimensional additional state.
* @return a mapper between two-dimensional Jacobians and one-dimensional additional state,
* with the same name as the instance
* @see #setInitialJacobians(SpacecraftState)
* @see #setInitialJacobians(SpacecraftState, double[][], double[][])
*/
public DSSTJacobiansMapper getMapper() {
if (!initialized) {
throw new OrekitException(OrekitMessages.STATE_JACOBIAN_NOT_INITIALIZED);
}
return new DSSTJacobiansMapper(name, selected, propagator, map, propagationType);
}
/** {@inheritDoc} */
public void init(final SpacecraftState initialState, final AbsoluteDate target) {
// FIXME: remove in 12.0 when AdditionalEquations is removed
AdditionalDerivativesProvider.super.init(initialState, target);
}
/** {@inheritDoc} */
public double[] computeDerivatives(final SpacecraftState s, final double[] pDot) {
// FIXME: remove in 12.0 when AdditionalEquations is removed
System.arraycopy(derivatives(s), 0, pDot, 0, pDot.length);
return null;
}
/** {@inheritDoc} */
public double[] derivatives(final SpacecraftState s) {
// initialize Jacobians to zero
final int paramDim = selected.getNbParams();
final int dim = 6;
final double[][] dMeanElementRatedParam = new double[dim][paramDim];
final double[][] dMeanElementRatedElement = new double[dim][dim];
final DSSTGradientConverter converter = new DSSTGradientConverter(s, propagator.getAttitudeProvider());
// Compute Jacobian
for (final DSSTForceModel forceModel : propagator.getAllForceModels()) {
final FieldSpacecraftState<Gradient> dsState = converter.getState(forceModel);
final Gradient[] parameters = converter.getParameters(dsState, forceModel);
final FieldAuxiliaryElements<Gradient> auxiliaryElements = new FieldAuxiliaryElements<>(dsState.getOrbit(), I);
// "field" initialization of the force model if it was not done before
forceModel.initializeShortPeriodTerms(auxiliaryElements, propagationType, parameters);
final Gradient[] meanElementRate = forceModel.getMeanElementRate(dsState, auxiliaryElements, parameters);
final double[] derivativesA = meanElementRate[0].getGradient();
final double[] derivativesEx = meanElementRate[1].getGradient();
final double[] derivativesEy = meanElementRate[2].getGradient();
final double[] derivativesHx = meanElementRate[3].getGradient();
final double[] derivativesHy = meanElementRate[4].getGradient();
final double[] derivativesL = meanElementRate[5].getGradient();
// update Jacobian with respect to state
addToRow(derivativesA, 0, dMeanElementRatedElement);
addToRow(derivativesEx, 1, dMeanElementRatedElement);
addToRow(derivativesEy, 2, dMeanElementRatedElement);
addToRow(derivativesHx, 3, dMeanElementRatedElement);
addToRow(derivativesHy, 4, dMeanElementRatedElement);
addToRow(derivativesL, 5, dMeanElementRatedElement);
int index = converter.getFreeStateParameters();
for (ParameterDriver driver : forceModel.getParametersDrivers()) {
if (driver.isSelected()) {
final int parameterIndex = map.get(driver);
dMeanElementRatedParam[0][parameterIndex] += derivativesA[index];
dMeanElementRatedParam[1][parameterIndex] += derivativesEx[index];
dMeanElementRatedParam[2][parameterIndex] += derivativesEy[index];
dMeanElementRatedParam[3][parameterIndex] += derivativesHx[index];
dMeanElementRatedParam[4][parameterIndex] += derivativesHy[index];
dMeanElementRatedParam[5][parameterIndex] += derivativesL[index];
++index;
}
}
}
// The variational equations of the complete state Jacobian matrix have the following form:
// [ Adot ] = [ dMeanElementRatedElement ] * [ A ]
// The A matrix and its derivative (Adot) are 6 * 6 matrices
// The following loops compute these expression taking care of the mapping of the
// A matrix into the single dimension array p and of the mapping of the
// Adot matrix into the single dimension array pDot.
final double[] p = s.getAdditionalState(getName());
final double[] pDot = new double[p.length];
for (int i = 0; i < dim; i++) {
final double[] dMeanElementRatedElementi = dMeanElementRatedElement[i];
for (int j = 0; j < dim; j++) {
pDot[j + dim * i] =
dMeanElementRatedElementi[0] * p[j] + dMeanElementRatedElementi[1] * p[j + dim] + dMeanElementRatedElementi[2] * p[j + 2 * dim] +
dMeanElementRatedElementi[3] * p[j + 3 * dim] + dMeanElementRatedElementi[4] * p[j + 4 * dim] + dMeanElementRatedElementi[5] * p[j + 5 * dim];
}
}
final int columnTop = dim * dim;
for (int k = 0; k < paramDim; k++) {
// the variational equations of the parameters Jacobian matrix are computed
// one column at a time, they have the following form:
// [ Bdot ] = [ dMeanElementRatedElement ] * [ B ] + [ dMeanElementRatedParam ]
// The B sub-columns and its derivative (Bdot) are 6 elements columns.
// The following loops compute this expression taking care of the mapping of the
// B columns into the single dimension array p and of the mapping of the
// Bdot columns into the single dimension array pDot.
for (int i = 0; i < dim; ++i) {
final double[] dMeanElementRatedElementi = dMeanElementRatedElement[i];
pDot[columnTop + (i + dim * k)] =
dMeanElementRatedParam[i][k] +
dMeanElementRatedElementi[0] * p[columnTop + k] + dMeanElementRatedElementi[1] * p[columnTop + k + paramDim] + dMeanElementRatedElementi[2] * p[columnTop + k + 2 * paramDim] +
dMeanElementRatedElementi[3] * p[columnTop + k + 3 * paramDim] + dMeanElementRatedElementi[4] * p[columnTop + k + 4 * paramDim] + dMeanElementRatedElementi[5] * p[columnTop + k + 5 * paramDim];
}
}
return pDot;
}
/** Fill Jacobians rows.
* @param derivatives derivatives of a component
* @param index component index (0 for a, 1 for ex, 2 for ey, 3 for hx, 4 for hy, 5 for l)
* @param dMeanElementRatedElement Jacobian of mean elements rate with respect to mean elements
*/
private void addToRow(final double[] derivatives, final int index,
final double[][] dMeanElementRatedElement) {
for (int i = 0; i < 6; i++) {
dMeanElementRatedElement[index][i] += derivatives[i];
}
}
}