OrbitDeterminationKey.java
/* Copyright 2002-2022 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.files.ccsds.ndm.odm.ocm;
import org.orekit.files.ccsds.definitions.OdMethodFacade;
import org.orekit.files.ccsds.utils.ContextBinding;
import org.orekit.files.ccsds.utils.lexical.ParseToken;
import org.orekit.files.ccsds.utils.lexical.TokenType;
import org.orekit.utils.units.Unit;
/** Keys for {@link OrbitDetermination orbit determination data} entries.
* @author Luc Maisonobe
* @since 11.0
*/
public enum OrbitDeterminationKey {
/** Comment entry. */
COMMENT((token, context, container) ->
token.getType() == TokenType.ENTRY ? container.addComment(token.getContentAsNormalizedString()) : true),
/** Identification number. */
OD_ID((token, context, container) -> token.processAsNormalizedString(container::setId)),
/** Identification of previous orbit determination. */
OD_PREV_ID((token, context, container) -> token.processAsNormalizedString(container::setPrevId)),
/** Orbit determination method. */
OD_METHOD((token, context, container) -> {
if (token.getType() == TokenType.ENTRY) {
container.setMethod(OdMethodFacade.parse(token.getContentAsNormalizedString()));
}
return true;
}),
/** Time tag for orbit determination solved-for state. */
OD_EPOCH((token, context, container) -> token.processAsDate(container::setEpoch, context)),
/** Time elapsed between first accepted observation on epoch. */
DAYS_SINCE_FIRST_OBS((token, context, container) -> token.processAsDouble(Unit.DAY, context.getParsedUnitsBehavior(),
container::setTimeSinceFirstObservation)),
/** Time elapsed between last accepted observation on epoch. */
DAYS_SINCE_LAST_OBS((token, context, container) -> token.processAsDouble(Unit.DAY, context.getParsedUnitsBehavior(),
container::setTimeSinceLastObservation)),
/** Sime span of observation recommended for the OD of the object. */
RECOMMENDED_OD_SPAN((token, context, container) -> token.processAsDouble(Unit.DAY, context.getParsedUnitsBehavior(),
container::setRecommendedOdSpan)),
/** Actual time span used for the OD of the object. */
ACTUAL_OD_SPAN((token, context, container) -> token.processAsDouble(Unit.DAY, context.getParsedUnitsBehavior(),
container::setActualOdSpan)),
/** Number of observations available within the actual OD span. */
OBS_AVAILABLE((token, context, container) -> token.processAsInteger(container::setObsAvailable)),
/** Number of observations accepted within the actual OD span. */
OBS_USED((token, context, container) -> token.processAsInteger(container::setObsUsed)),
/** Number of sensors tracks available for the OD within the actual OD span. */
TRACKS_AVAILABLE((token, context, container) -> token.processAsInteger(container::setTracksAvailable)),
/** Number of sensors tracks accepted for the OD within the actual OD span. */
TRACKS_USED((token, context, container) -> token.processAsInteger(container::setTracksUsed)),
/** Maximum time between observations in the OD of the object. */
MAXIMUM_OBS_GAP((token, context, container) -> token.processAsDouble(Unit.DAY, context.getParsedUnitsBehavior(),
container::setMaximumObsGap)),
/** Positional error ellipsoid 1σ major eigenvalue at the epoch of OD. */
OD_EPOCH_EIGMAJ((token, context, container) -> token.processAsDouble(Unit.METRE, context.getParsedUnitsBehavior(),
container::setEpochEigenMaj)),
/** Positional error ellipsoid 1σ intermediate eigenvalue at the epoch of OD. */
OD_EPOCH_EIGINT((token, context, container) -> token.processAsDouble(Unit.METRE, context.getParsedUnitsBehavior(),
container::setEpochEigenInt)),
/** Positional error ellipsoid 1σ minor eigenvalue at the epoch of OD. */
OD_EPOCH_EIGMIN((token, context, container) -> token.processAsDouble(Unit.METRE, context.getParsedUnitsBehavior(),
container::setEpochEigenMin)),
/** Maximum predicted major eigenvalue of 1σ positional error ellipsoid over entire time span of the OCM. */
OD_MAX_PRED_EIGMAJ((token, context, container) -> token.processAsDouble(Unit.METRE, context.getParsedUnitsBehavior(),
container::setMaxPredictedEigenMaj)),
/** Minimum predicted minor eigenvalue of 1σ positional error ellipsoid over entire time span of the OCM. */
OD_MIN_PRED_EIGMIN((token, context, container) -> token.processAsDouble(Unit.METRE, context.getParsedUnitsBehavior(),
container::setMinPredictedEigenMin)),
/** Confidence metric. */
OD_CONFIDENCE((token, context, container) -> token.processAsDouble(Unit.PERCENT, context.getParsedUnitsBehavior(),
container::setConfidence)),
/** Generalize Dilution Of Precision. */
GDOP((token, context, container) -> token.processAsDouble(Unit.ONE, context.getParsedUnitsBehavior(), container::setGdop)),
/** Number of solved-for states. */
SOLVE_N((token, context, container) -> token.processAsInteger(container::setSolveN)),
/** Description of state elements solved-for. */
SOLVE_STATES((token, context, container) -> token.processAsNormalizedList(container::setSolveStates)),
/** Number of consider parameters. */
CONSIDER_N((token, context, container) -> token.processAsInteger(container::setConsiderN)),
/** Description of consider parameters. */
CONSIDER_PARAMS((token, context, container) -> token.processAsNormalizedList(container::setConsiderParameters)),
/** Number of sensors used. */
SENSORS_N((token, context, container) -> token.processAsInteger(container::setSensorsN)),
/** Description of sensors used. */
SENSORS((token, context, container) -> token.processAsNormalizedList(container::setSensors)),
/** Weighted RMS residual ratio. */
WEIGHTED_RMS((token, context, container) -> token.processAsDouble(Unit.ONE, context.getParsedUnitsBehavior(),
container::setWeightedRms)),
/** Observation data types used. */
DATA_TYPES((token, context, container) -> token.processAsNormalizedList(container::setDataTypes));
/** Processing method. */
private final TokenProcessor processor;
/** Simple constructor.
* @param processor processing method
*/
OrbitDeterminationKey(final TokenProcessor processor) {
this.processor = processor;
}
/** Process an token.
* @param token token to process
* @param context context binding
* @param container container to fill
* @return true of token was accepted
*/
public boolean process(final ParseToken token, final ContextBinding context, final OrbitDetermination container) {
return processor.process(token, context, container);
}
/** Interface for processing one token. */
interface TokenProcessor {
/** Process one token.
* @param token token to process
* @param context context binding
* @param container container to fill
* @return true of token was accepted
*/
boolean process(ParseToken token, ContextBinding context, OrbitDetermination container);
}
}