SolarRadiationPressure.java
/* Copyright 2002-2022 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.forces.radiation;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathArrays;
import org.hipparchus.util.Precision;
import org.orekit.frames.Frame;
import org.orekit.propagation.FieldSpacecraftState;
import org.orekit.propagation.SpacecraftState;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.utils.Constants;
import org.orekit.utils.ExtendedPVCoordinatesProvider;
import org.orekit.utils.ParameterDriver;
/** Solar radiation pressure force model.
* <p>
* Since Orekit 11.0, it is possible to take into account
* the eclipses generated by Moon in the solar radiation
* pressure force model using the
* {@link #addOccultingBody(ExtendedPVCoordinatesProvider, double)}
* method.
* <p>
* Example:<br>
* <code> SolarRadiationPressure srp = </code>
* <code> new SolarRadiationPressure(CelestialBodyFactory.getSun(), Constants.EIGEN5C_EARTH_EQUATORIAL_RADIUS,</code>
* <code> new IsotropicRadiationClassicalConvention(50.0, 0.5, 0.5));</code><br>
* <code> srp.addOccultingBody(CelestialBodyFactory.getMoon(), Constants.MOON_EQUATORIAL_RADIUS);</code><br>
*
* @author Fabien Maussion
* @author Édouard Delente
* @author Véronique Pommier-Maurussane
* @author Pascal Parraud
*/
public class SolarRadiationPressure extends AbstractRadiationForceModel {
/** Reference distance for the solar radiation pressure (m). */
private static final double D_REF = 149597870000.0;
/** Reference solar radiation pressure at D_REF (N/m²). */
private static final double P_REF = 4.56e-6;
/** Margin to force recompute lighting ratio derivatives when we are really inside penumbra. */
private static final double ANGULAR_MARGIN = 1.0e-10;
/** Reference flux normalized for a 1m distance (N). */
private final double kRef;
/** Sun model. */
private final ExtendedPVCoordinatesProvider sun;
/** Spacecraft. */
private final RadiationSensitive spacecraft;
/** Simple constructor with default reference values.
* <p>When this constructor is used, the reference values are:</p>
* <ul>
* <li>d<sub>ref</sub> = 149597870000.0 m</li>
* <li>p<sub>ref</sub> = 4.56 10<sup>-6</sup> N/m²</li>
* </ul>
* @param sun Sun model
* @param equatorialRadius spherical shape model (for umbra/penumbra computation)
* @param spacecraft the object physical and geometrical information
* @since 9.2
*/
public SolarRadiationPressure(final ExtendedPVCoordinatesProvider sun, final double equatorialRadius,
final RadiationSensitive spacecraft) {
this(D_REF, P_REF, sun, equatorialRadius, spacecraft);
}
/** Complete constructor.
* <p>Note that reference solar radiation pressure <code>pRef</code> in
* N/m² is linked to solar flux SF in W/m² using
* formula pRef = SF/c where c is the speed of light (299792458 m/s). So
* at 1UA a 1367 W/m² solar flux is a 4.56 10<sup>-6</sup>
* N/m² solar radiation pressure.</p>
* @param dRef reference distance for the solar radiation pressure (m)
* @param pRef reference solar radiation pressure at dRef (N/m²)
* @param sun Sun model
* @param equatorialRadius spherical shape model (for umbra/penumbra computation)
* @param spacecraft the object physical and geometrical information
* @since 9.2
*/
public SolarRadiationPressure(final double dRef, final double pRef,
final ExtendedPVCoordinatesProvider sun,
final double equatorialRadius,
final RadiationSensitive spacecraft) {
super(sun, equatorialRadius);
this.kRef = pRef * dRef * dRef;
this.sun = sun;
this.spacecraft = spacecraft;
}
/** {@inheritDoc} */
@Override
public Vector3D acceleration(final SpacecraftState s, final double[] parameters) {
final AbsoluteDate date = s.getDate();
final Frame frame = s.getFrame();
final Vector3D position = s.getPVCoordinates().getPosition();
final Vector3D sunSatVector = position.subtract(sun.getPVCoordinates(date, frame).getPosition());
final double r2 = sunSatVector.getNormSq();
// compute flux
final double ratio = getTotalLightingRatio(position, frame, date);
final double rawP = ratio * kRef / r2;
final Vector3D flux = new Vector3D(rawP / FastMath.sqrt(r2), sunSatVector);
return spacecraft.radiationPressureAcceleration(date, frame, position, s.getAttitude().getRotation(),
s.getMass(), flux, parameters);
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> FieldVector3D<T> acceleration(final FieldSpacecraftState<T> s,
final T[] parameters) {
final FieldAbsoluteDate<T> date = s.getDate();
final Frame frame = s.getFrame();
final FieldVector3D<T> position = s.getPVCoordinates().getPosition();
final FieldVector3D<T> sunSatVector = position.subtract(sun.getPVCoordinates(date, frame).getPosition());
final T r2 = sunSatVector.getNormSq();
// compute flux
final T ratio = getTotalLightingRatio(position, frame, date);
final T rawP = ratio.multiply(kRef).divide(r2);
final FieldVector3D<T> flux = new FieldVector3D<>(rawP.divide(r2.sqrt()), sunSatVector);
return spacecraft.radiationPressureAcceleration(date, frame, position, s.getAttitude().getRotation(),
s.getMass(), flux, parameters);
}
/** Get the lighting ratio ([0-1]).
* Considers only central body as occulting body.
* @param position the satellite's position in the selected frame.
* @param frame in which is defined the position
* @param date the date
* @return lighting ratio
* @since 7.1
*/
public double getLightingRatio(final Vector3D position, final Frame frame, final AbsoluteDate date) {
final Vector3D sunPosition = sun.getPVCoordinates(date, frame).getPosition();
if (sunPosition.getNorm() < 2 * Constants.SUN_RADIUS) {
// we are in fact computing a trajectory around Sun (or solar system barycenter),
// not around a planet,we consider lighting ratio is always 1
return 1.0;
}
// Compute useful angles
final double[] angle = getEclipseAngles(sunPosition, position);
// Sat-Sun / Sat-CentralBody angle
final double sunSatCentralBodyAngle = angle[0];
// Central Body apparent radius
final double alphaCentral = angle[1];
// Sun apparent radius
final double alphaSun = angle[2];
double result = 1.0;
// Is the satellite in complete umbra ?
if (sunSatCentralBodyAngle - alphaCentral + alphaSun <= ANGULAR_MARGIN) {
result = 0.0;
} else if (sunSatCentralBodyAngle - alphaCentral - alphaSun < -ANGULAR_MARGIN) {
// Compute a lighting ratio in penumbra
final double sEA2 = sunSatCentralBodyAngle * sunSatCentralBodyAngle;
final double oo2sEA = 1.0 / (2. * sunSatCentralBodyAngle);
final double aS2 = alphaSun * alphaSun;
final double aE2 = alphaCentral * alphaCentral;
final double aE2maS2 = aE2 - aS2;
final double alpha1 = (sEA2 - aE2maS2) * oo2sEA;
final double alpha2 = (sEA2 + aE2maS2) * oo2sEA;
// Protection against numerical inaccuracy at boundaries
final double almost0 = Precision.SAFE_MIN;
final double almost1 = FastMath.nextDown(1.0);
final double a1oaS = FastMath.min(almost1, FastMath.max(-almost1, alpha1 / alphaSun));
final double aS2ma12 = FastMath.max(almost0, aS2 - alpha1 * alpha1);
final double a2oaE = FastMath.min(almost1, FastMath.max(-almost1, alpha2 / alphaCentral));
final double aE2ma22 = FastMath.max(almost0, aE2 - alpha2 * alpha2);
final double P1 = aS2 * FastMath.acos(a1oaS) - alpha1 * FastMath.sqrt(aS2ma12);
final double P2 = aE2 * FastMath.acos(a2oaE) - alpha2 * FastMath.sqrt(aE2ma22);
result = 1. - (P1 + P2) / (FastMath.PI * aS2);
}
return result;
}
/** Get eclipse ratio between to bodies seen from a specific object.
* Ratio is in [0-1].
* @param position the satellite's position in the selected frame
* @param occultingPosition the position of the occulting object
* @param occultingRadius the mean radius of the occulting object
* @param occultedPosition the position of the occulted object
* @param occultedRadius the mean radius of the occulted object
* @return eclipse ratio
*/
public double getGeneralEclipseRatio(final Vector3D position,
final Vector3D occultingPosition,
final double occultingRadius,
final Vector3D occultedPosition,
final double occultedRadius) {
// Compute useful angles
final double[] angle = getGeneralEclipseAngles(position, occultingPosition, occultingRadius, occultedPosition, occultedRadius);
// Sat-Occulted/ Sat-Occulting angle
final double occultedSatOcculting = angle[0];
// Occulting apparent radius
final double alphaOcculting = angle[1];
// Occulted apparent radius
final double alphaOcculted = angle[2];
double result = 1.0;
// Is the satellite in complete umbra ?
if (occultedSatOcculting - alphaOcculting + alphaOcculted <= ANGULAR_MARGIN) {
result = 0.0;
} else if (occultedSatOcculting - alphaOcculting - alphaOcculted < -ANGULAR_MARGIN) {
// Compute an eclipse ratio in penumbra
final double sEA2 = occultedSatOcculting * occultedSatOcculting;
final double oo2sEA = 1.0 / (2. * occultedSatOcculting);
final double aS2 = alphaOcculted * alphaOcculted;
final double aE2 = alphaOcculting * alphaOcculting;
final double aE2maS2 = aE2 - aS2;
final double alpha1 = (sEA2 - aE2maS2) * oo2sEA;
final double alpha2 = (sEA2 + aE2maS2) * oo2sEA;
// Protection against numerical inaccuracy at boundaries
final double almost0 = Precision.SAFE_MIN;
final double almost1 = FastMath.nextDown(1.0);
final double a1oaS = FastMath.min(almost1, FastMath.max(-almost1, alpha1 / alphaOcculted));
final double aS2ma12 = FastMath.max(almost0, aS2 - alpha1 * alpha1);
final double a2oaE = FastMath.min(almost1, FastMath.max(-almost1, alpha2 / alphaOcculting));
final double aE2ma22 = FastMath.max(almost0, aE2 - alpha2 * alpha2);
final double P1 = aS2 * FastMath.acos(a1oaS) - alpha1 * FastMath.sqrt(aS2ma12);
final double P2 = aE2 * FastMath.acos(a2oaE) - alpha2 * FastMath.sqrt(aE2ma22);
result = 1. - (P1 + P2) / (FastMath.PI * aS2);
}
return result;
}
/** Get the total lighting ratio ([0-1]).
* This method considers every occulting bodies.
* @param position the satellite's position in the selected frame.
* @param frame in which is defined the position
* @param date the date
* @return lighting ratio
*/
public double getTotalLightingRatio(final Vector3D position, final Frame frame, final AbsoluteDate date) {
double result = 0.0;
final Map<ExtendedPVCoordinatesProvider, Double> otherOccultingBodies = getOtherOccultingBodies();
final Vector3D sunPosition = sun.getPVCoordinates(date, frame).getPosition();
final int n = otherOccultingBodies.size() + 1;
if (n > 1) {
final Vector3D[] occultingBodyPositions = new Vector3D[n];
final double[] occultingBodyRadiuses = new double[n];
// Central body
occultingBodyPositions[0] = new Vector3D(0.0, 0.0, 0.0);
occultingBodyRadiuses[0] = getEquatorialRadius();
// Other occulting bodies
int k = 1;
for (Map.Entry<ExtendedPVCoordinatesProvider, Double> entry : otherOccultingBodies.entrySet()) {
occultingBodyPositions[k] = entry.getKey().getPVCoordinates(date, frame).getPosition();
occultingBodyRadiuses[k] = entry.getValue();
++k;
}
for (int i = 0; i < n; ++i) {
// Lighting ratio computations
final double eclipseRatioI = getGeneralEclipseRatio(position,
occultingBodyPositions[i],
occultingBodyRadiuses[i],
sunPosition,
Constants.SUN_RADIUS);
// First body totaly occults Sun, full eclipse is occuring.
if (eclipseRatioI == 0.0) {
return 0.0;
}
result += eclipseRatioI;
// Mutual occulting body eclipse ratio computations between first and secondary bodies
for (int j = i + 1; j < n; ++j) {
final double eclipseRatioJ = getGeneralEclipseRatio(position,
occultingBodyPositions[j],
occultingBodyRadiuses[j],
sunPosition,
Constants.SUN_RADIUS);
final double eclipseRatioIJ = getGeneralEclipseRatio(position,
occultingBodyPositions[i],
occultingBodyRadiuses[i],
occultingBodyPositions[j],
occultingBodyRadiuses[j]);
final double alphaJ = getGeneralEclipseAngles(position,
occultingBodyPositions[i],
occultingBodyRadiuses[i],
occultingBodyPositions[j],
occultingBodyRadiuses[j])[2];
final double alphaSun = getEclipseAngles(sunPosition, position)[2];
final double alphaJSq = alphaJ * alphaJ;
final double alphaSunSq = alphaSun * alphaSun;
final double mutualEclipseCorrection = (1 - eclipseRatioIJ) * alphaJSq / alphaSunSq;
// Secondary body totally occults Sun, no more computations are required, full eclipse is occuring.
if (eclipseRatioJ == 0.0 ) {
return 0.0;
}
// Secondary body partially occults Sun
else if (eclipseRatioJ != 1) {
result -= mutualEclipseCorrection;
}
}
}
// Final term
result -= n - 1;
} else {
// only central body is considered
result = getLightingRatio(position, frame, date);
}
return result;
}
/** Get the lighting ratio ([0-1]).
* Considers only central body as occulting body.
* @param position the satellite's position in the selected frame.
* @param frame in which is defined the position
* @param date the date
* @param <T> extends CalculusFieldElement
* @return lighting ratio
* @since 7.1
*/
public <T extends CalculusFieldElement<T>> T getLightingRatio(final FieldVector3D<T> position,
final Frame frame,
final FieldAbsoluteDate<T> date) {
final T one = date.getField().getOne();
final FieldVector3D<T> sunPosition = sun.getPVCoordinates(date, frame).getPosition();
if (sunPosition.getNorm().getReal() < 2 * Constants.SUN_RADIUS) {
// we are in fact computing a trajectory around Sun (or solar system barycenter),
// not around a planet,we consider lighting ratio is always 1
return one;
}
// Compute useful angles
final T[] angle = getEclipseAngles(sunPosition, position);
// Sat-Sun / Sat-CentralBody angle
final T sunsatCentralBodyAngle = angle[0];
// Central Body apparent radius
final T alphaCentral = angle[1];
// Sun apparent radius
final T alphaSun = angle[2];
T result = one;
// Is the satellite in complete umbra ?
if (sunsatCentralBodyAngle.getReal() - alphaCentral.getReal() + alphaSun.getReal() <= ANGULAR_MARGIN) {
result = date.getField().getZero();
} else if (sunsatCentralBodyAngle.getReal() - alphaCentral.getReal() - alphaSun.getReal() < -ANGULAR_MARGIN) {
// Compute a lighting ratio in penumbra
final T sEA2 = sunsatCentralBodyAngle.multiply(sunsatCentralBodyAngle);
final T oo2sEA = sunsatCentralBodyAngle.multiply(2).reciprocal();
final T aS2 = alphaSun.multiply(alphaSun);
final T aE2 = alphaCentral.multiply(alphaCentral);
final T aE2maS2 = aE2.subtract(aS2);
final T alpha1 = sEA2.subtract(aE2maS2).multiply(oo2sEA);
final T alpha2 = sEA2.add(aE2maS2).multiply(oo2sEA);
// Protection against numerical inaccuracy at boundaries
final double almost0 = Precision.SAFE_MIN;
final double almost1 = FastMath.nextDown(1.0);
final T a1oaS = min(almost1, max(-almost1, alpha1.divide(alphaSun)));
final T aS2ma12 = max(almost0, aS2.subtract(alpha1.multiply(alpha1)));
final T a2oaE = min(almost1, max(-almost1, alpha2.divide(alphaCentral)));
final T aE2ma22 = max(almost0, aE2.subtract(alpha2.multiply(alpha2)));
final T P1 = aS2.multiply(a1oaS.acos()).subtract(alpha1.multiply(aS2ma12.sqrt()));
final T P2 = aE2.multiply(a2oaE.acos()).subtract(alpha2.multiply(aE2ma22.sqrt()));
result = one.subtract(P1.add(P2).divide(aS2.multiply(one.getPi())));
}
return result;
}
/** Get eclipse ratio between to bodies seen from a specific object.
* Ratio is in [0-1].
* @param position the satellite's position in the selected frame
* @param occultingPosition the position of the occulting object
* @param occultingRadius the mean radius of the occulting object
* @param occultedPosition the position of the occulted object
* @param occultedRadius the mean radius of the occulted object
* @param <T> extends RealFieldElement
* @return eclipse ratio
*/
public <T extends CalculusFieldElement<T>> T getGeneralEclipseRatio(final FieldVector3D<T> position,
final FieldVector3D<T> occultingPosition,
final T occultingRadius,
final FieldVector3D<T> occultedPosition,
final T occultedRadius) {
final T one = occultingRadius.getField().getOne();
// Compute useful angles
final T[] angle = getGeneralEclipseAngles(position, occultingPosition, occultingRadius, occultedPosition, occultedRadius);
// Sat-Occulted/ Sat-Occulting angle
final T occultedSatOcculting = angle[0];
// Occulting apparent radius
final T alphaOcculting = angle[1];
// Occulted apparent radius
final T alphaOcculted = angle[2];
T result = one;
// Is the satellite in complete umbra ?
if (occultedSatOcculting.getReal() - alphaOcculting.getReal() + alphaOcculted.getReal() <= ANGULAR_MARGIN) {
result = occultingRadius.getField().getZero();
} else if (occultedSatOcculting.getReal() - alphaOcculting.getReal() - alphaOcculted.getReal() < -ANGULAR_MARGIN) {
// Compute a lighting ratio in penumbra
final T sEA2 = occultedSatOcculting.multiply(occultedSatOcculting);
final T oo2sEA = occultedSatOcculting.multiply(2).reciprocal();
final T aS2 = alphaOcculted.multiply(alphaOcculted);
final T aE2 = alphaOcculting.multiply(alphaOcculting);
final T aE2maS2 = aE2.subtract(aS2);
final T alpha1 = sEA2.subtract(aE2maS2).multiply(oo2sEA);
final T alpha2 = sEA2.add(aE2maS2).multiply(oo2sEA);
// Protection against numerical inaccuracy at boundaries
final double almost0 = Precision.SAFE_MIN;
final double almost1 = FastMath.nextDown(1.0);
final T a1oaS = min(almost1, max(-almost1, alpha1.divide(alphaOcculted)));
final T aS2ma12 = max(almost0, aS2.subtract(alpha1.multiply(alpha1)));
final T a2oaE = min(almost1, max(-almost1, alpha2.divide(alphaOcculting)));
final T aE2ma22 = max(almost0, aE2.subtract(alpha2.multiply(alpha2)));
final T P1 = aS2.multiply(a1oaS.acos()).subtract(alpha1.multiply(aS2ma12.sqrt()));
final T P2 = aE2.multiply(a2oaE.acos()).subtract(alpha2.multiply(aE2ma22.sqrt()));
result = one.subtract(P1.add(P2).divide(aS2.multiply(one.getPi())));
}
return result;
}
/** Get the total lighting ratio ([0-1]).
* This method considers every occulting bodies.
* @param position the satellite's position in the selected frame.
* @param frame in which is defined the position
* @param date the date
* @param <T> extends RealFieldElement
* @return lighting rati
*/
public <T extends CalculusFieldElement<T>> T getTotalLightingRatio(final FieldVector3D<T> position, final Frame frame, final FieldAbsoluteDate<T> date) {
final T zero = position.getAlpha().getField().getZero();
T result = zero;
final Map<ExtendedPVCoordinatesProvider, Double> otherOccultingBodies = getOtherOccultingBodies();
final FieldVector3D<T> sunPosition = sun.getPVCoordinates(date, frame).getPosition();
final int n = otherOccultingBodies.size() + 1;
if (n > 1) {
final List<FieldVector3D<T>> occultingBodyPositions = new ArrayList<FieldVector3D<T>>(n);
final T[] occultingBodyRadiuses = MathArrays.buildArray(zero.getField(), n);
// Central body
occultingBodyPositions.add(0, new FieldVector3D<>(zero, zero, zero));
occultingBodyRadiuses[0] = zero.add(getEquatorialRadius());
// Other occulting bodies
int k = 1;
for (Map.Entry<ExtendedPVCoordinatesProvider, Double> entry: otherOccultingBodies.entrySet()) {
occultingBodyPositions.add(k, entry.getKey().getPVCoordinates(date, frame).getPosition());
occultingBodyRadiuses[k] = zero.newInstance(entry.getValue());
++k;
}
for (int i = 0; i < n; ++i) {
// Lighting ratio computations
final T eclipseRatioI = getGeneralEclipseRatio(position,
occultingBodyPositions.get(i),
occultingBodyRadiuses[i],
sunPosition,
zero.add(Constants.SUN_RADIUS));
// First body totally occults Sun, full eclipse is occuring.
if (eclipseRatioI.getReal() == 0.0) {
return zero;
}
result = result.add(eclipseRatioI);
// Mutual occulting body eclipse ratio computations between first and secondary bodies
for (int j = i + 1; j < n; ++j) {
final T eclipseRatioJ = getGeneralEclipseRatio(position,
occultingBodyPositions.get(i),
occultingBodyRadiuses[j],
sunPosition,
zero.add(Constants.SUN_RADIUS));
final T eclipseRatioIJ = getGeneralEclipseRatio(position,
occultingBodyPositions.get(i),
occultingBodyRadiuses[i],
occultingBodyPositions.get(j),
occultingBodyRadiuses[j]);
final T alphaJ = getGeneralEclipseAngles(position,
occultingBodyPositions.get(i),
occultingBodyRadiuses[i],
occultingBodyPositions.get(j),
occultingBodyRadiuses[j])[2];
final T alphaSun = getEclipseAngles(sunPosition, position)[2];
final T alphaJSq = alphaJ.multiply(alphaJ);
final T alphaSunSq = alphaSun.multiply(alphaSun);
final T mutualEclipseCorrection = eclipseRatioIJ.negate().add(1).multiply(alphaJSq).divide(alphaSunSq);
// Secondary body totaly occults Sun, no more computations are required, full eclipse is occuring.
if (eclipseRatioJ.getReal() == 0.0 ) {
return zero;
}
// Secondary body partially occults Sun
else if (eclipseRatioJ.getReal() != 1) {
result = result.subtract(mutualEclipseCorrection);
}
}
}
// Final term
result = result.subtract(n - 1);
} else {
// only central body is considered
result = getLightingRatio(position, frame, date);
}
return result;
}
/** {@inheritDoc} */
@Override
public List<ParameterDriver> getParametersDrivers() {
return spacecraft.getRadiationParametersDrivers();
}
/** Compute min of two values, one double and one field element.
* @param d double value
* @param f field element
* @param <T> type fo the field elements
* @return min value
*/
private <T extends CalculusFieldElement<T>> T min(final double d, final T f) {
return (f.getReal() > d) ? f.getField().getZero().newInstance(d) : f;
}
/** Compute max of two values, one double and one field element.
* @param d double value
* @param f field element
* @param <T> type fo the field elements
* @return max value
*/
private <T extends CalculusFieldElement<T>> T max(final double d, final T f) {
return (f.getReal() <= d) ? f.getField().getZero().newInstance(d) : f;
}
}