ScaledConstantThrustPropulsionModel.java
/* Copyright 2002-2022 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.forces.maneuvers.propulsion;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.util.FastMath;
import org.orekit.utils.ParameterDriver;
/** Thrust propulsion model with parameters (for estimation) represented by scale factors
* on the X, Y and Z axis of the spacecraft frame.
* @author Maxime Journot
* @since 10.2
*/
public class ScaledConstantThrustPropulsionModel extends AbstractConstantThrustPropulsionModel {
/** Parameter name for the scale factor on the X component of the thrust in S/C frame. */
public static final String THRUSTX_SCALE_FACTOR = "TX scale factor";
/** Parameter name for the scale factor on the Y component of the thrust in S/C frame. */
public static final String THRUSTY_SCALE_FACTOR = "TY scale factor";
/** Parameter name for the scale factor on the Z component of the thrust in S/C frame. */
public static final String THRUSTZ_SCALE_FACTOR = "TZ scale factor";
/** Thrust scaling factor.
* <p>
* We use a power of 2 to avoid numeric noise introduction
* in the multiplications/divisions sequences.
* </p>
*/
private static final double THRUST_SCALE = FastMath.scalb(1.0, -5);
/** Parameter driver for the scale factor on the X component of the thrust in S/C frame. */
private final ParameterDriver scaleFactorThrustXDriver;
/** Parameter driver for the scale factor on the Y component of the thrust in S/C frame. */
private final ParameterDriver scaleFactorThrustYDriver;
/** Parameter driver for the scale factor on the Z component of the thrust in S/C frame. */
private final ParameterDriver scaleFactorThrustZDriver;
/** Constructor with min/max deviation for the scale factors.
* Typical usage is, for example, if you know that your propulsion system
* usually has an error of less than 10% then set the min/max to respectively 0.9 and 1.1.
* @param thrust the thrust (N)
* @param isp the isp (s)
* @param direction in spacecraft frame
* @param name the name of the maneuver
*/
public ScaledConstantThrustPropulsionModel(final double thrust,
final double isp,
final Vector3D direction,
final String name) {
super(thrust, isp, direction, name);
// Build the parameter drivers, using maneuver name as prefix
this.scaleFactorThrustXDriver = new ParameterDriver(name + THRUSTX_SCALE_FACTOR, 1., THRUST_SCALE,
Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY);
this.scaleFactorThrustYDriver = new ParameterDriver(name + THRUSTY_SCALE_FACTOR, 1., THRUST_SCALE,
Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY);
this.scaleFactorThrustZDriver = new ParameterDriver(name + THRUSTZ_SCALE_FACTOR, 1., THRUST_SCALE,
Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY);
}
/** Get the thrust vector in S/C frame from scale factors (N).
* @param scaleFactorX thrust vector scale factor on X axis of S/C frame
* @param scaleFactorY thrust vector scale factor on Y axis of S/C frame
* @param scaleFactorZ thrust vector scale factor on Z axis of S/C frame
* @return thrust vector in S/C frame
*/
private Vector3D getThrustVector(final double scaleFactorX,
final double scaleFactorY,
final double scaleFactorZ) {
return new Vector3D(getInitialThrustVector().getX() * scaleFactorX,
getInitialThrustVector().getY() * scaleFactorY,
getInitialThrustVector().getZ() * scaleFactorZ);
}
/** {@inheritDoc} */
@Override
public Vector3D getThrustVector() {
return getThrustVector(scaleFactorThrustXDriver.getValue(),
scaleFactorThrustYDriver.getValue(),
scaleFactorThrustZDriver.getValue());
}
/** {@inheritDoc} */
@Override
public double getFlowRate() {
return getInitialFlowrate();
}
/** {@inheritDoc} */
@Override
public List<ParameterDriver> getParametersDrivers() {
final List<ParameterDriver> drivers = new ArrayList<>(3);
drivers.add(scaleFactorThrustXDriver);
drivers.add(scaleFactorThrustYDriver);
drivers.add(scaleFactorThrustZDriver);
return Collections.unmodifiableList(drivers);
}
/** {@inheritDoc} */
@Override
public Vector3D getThrustVector(final double parameters[]) {
return getThrustVector(parameters[0], parameters[1], parameters[2]);
}
/** {@inheritDoc} */
@Override
public double getFlowRate(final double[] parameters) {
return getInitialFlowrate();
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> FieldVector3D<T> getThrustVector(final T parameters[]) {
return new FieldVector3D<T>(parameters[0].multiply(getInitialThrustVector().getX()),
parameters[1].multiply(getInitialThrustVector().getY()),
parameters[2].multiply(getInitialThrustVector().getZ()));
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> T getFlowRate(final T[] parameters) {
return parameters[0].getField().getZero().add(getInitialFlowrate());
}
}