SemiAnalyticalUnscentedKalmanEstimator.java
/* Copyright 2002-2022 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.estimation.sequential;
import java.util.Collections;
import java.util.List;
import org.hipparchus.filtering.kalman.unscented.UnscentedKalmanFilter;
import org.hipparchus.linear.MatrixDecomposer;
import org.hipparchus.util.UnscentedTransformProvider;
import org.orekit.estimation.measurements.ObservedMeasurement;
import org.orekit.propagation.conversion.DSSTPropagatorBuilder;
import org.orekit.propagation.semianalytical.dsst.DSSTPropagator;
import org.orekit.utils.ParameterDriver;
import org.orekit.utils.ParameterDriversList;
/**
* Implementation of an Unscented Semi-analytical Kalman filter (USKF) to perform orbit determination.
* <p>
* The filter uses a {@link DSSTPropagatorBuilder}.
* </p>
* <p>
* The estimated parameters are driven by {@link ParameterDriver} objects. They are of 3 different types:<ol>
* <li><b>Orbital parameters</b>:The position and velocity of the spacecraft, or, more generally, its orbit.<br>
* These parameters are retrieved from the reference trajectory propagator builder when the filter is initialized.</li>
* <li><b>Propagation parameters</b>: Some parameters modeling physical processes (SRP or drag coefficients etc...).<br>
* They are also retrieved from the propagator builder during the initialization phase.</li>
* <li><b>Measurements parameters</b>: Parameters related to measurements (station biases, positions etc...).<br>
* They are passed down to the filter in its constructor.</li>
* </ol>
* <p>
* The Kalman filter implementation used is provided by the underlying mathematical library Hipparchus.
* All the variables seen by Hipparchus (states, covariances...) are normalized
* using a specific scale for each estimated parameters or standard deviation noise for each measurement components.
* </p>
*
* <p>An {@link SemiAnalyticalUnscentedKalmanEstimator} object is built using the {@link SemiAnalyticalUnscentedKalmanEstimatorBuilder#build() build}
* method of a {@link SemiAnalyticalUnscentedKalmanEstimatorBuilder}.</p>
*
* @author Gaƫtan Pierre
* @author Bryan Cazabonne
* @since 11.3
*/
public class SemiAnalyticalUnscentedKalmanEstimator extends AbstractKalmanEstimator {
/** Unscented Kalman filter process model. */
private final SemiAnalyticalUnscentedKalmanModel processModel;
/** Filter. */
private final UnscentedKalmanFilter<MeasurementDecorator> filter;
/** Unscented Kalman filter estimator constructor (package private).
* @param decomposer decomposer to use for the correction phase
* @param propagatorBuilder propagator builder used to evaluate the orbit.
* @param processNoiseMatricesProvider provider for process noise matrix
* @param estimatedMeasurementParameters measurement parameters to estimate
* @param measurementProcessNoiseMatrix provider for measurement process noise matrix
* @param utProvider provider for the unscented transform
*/
SemiAnalyticalUnscentedKalmanEstimator(final MatrixDecomposer decomposer,
final DSSTPropagatorBuilder propagatorBuilder,
final CovarianceMatrixProvider processNoiseMatricesProvider,
final ParameterDriversList estimatedMeasurementParameters,
final CovarianceMatrixProvider measurementProcessNoiseMatrix,
final UnscentedTransformProvider utProvider) {
super(Collections.singletonList(propagatorBuilder));
// Build the process model and measurement model
this.processModel = new SemiAnalyticalUnscentedKalmanModel(propagatorBuilder, processNoiseMatricesProvider,
estimatedMeasurementParameters, measurementProcessNoiseMatrix);
// Unscented Kalman Filter of Hipparchus
this.filter = new UnscentedKalmanFilter<>(decomposer, processModel, processModel.getEstimate(), utProvider);
}
/** {@inheritDoc}. */
@Override
protected KalmanEstimation getKalmanEstimation() {
return processModel;
}
/** Set the observer.
* @param observer the observer
*/
public void setObserver(final KalmanObserver observer) {
this.processModel.setObserver(observer);
}
/** Process a single measurement.
* <p>
* Update the filter with the new measurement by calling the estimate method.
* </p>
* @param observedMeasurements the list of measurements to process
* @return estimated propagators
*/
public DSSTPropagator processMeasurements(final List<ObservedMeasurement<?>> observedMeasurements) {
return processModel.processMeasurements(observedMeasurements, filter);
}
}