UnscentedKalmanEstimatorBuilder.java
/* Copyright 2002-2022 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.estimation.sequential;
import java.util.ArrayList;
import java.util.List;
import org.hipparchus.linear.MatrixDecomposer;
import org.hipparchus.linear.QRDecomposer;
import org.hipparchus.util.UnscentedTransformProvider;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitMessages;
import org.orekit.propagation.conversion.NumericalPropagatorBuilder;
import org.orekit.utils.ParameterDriversList;
/** Builder for an Unscented Kalman filter estimator.
* @author Gaƫtan Pierre
* @author Bryan Cazabonne
* @since 11.3
*/
public class UnscentedKalmanEstimatorBuilder {
/** Decomposer to use for the correction phase. */
private MatrixDecomposer decomposer;
/** Builders for propagators. */
private List<NumericalPropagatorBuilder> propagatorBuilders;
/** Estimated measurements parameters. */
private ParameterDriversList estimatedMeasurementsParameters;
/** Process noise matrix providers. */
private List<CovarianceMatrixProvider> processNoiseMatrixProviders;
/** Process noise matrix provider for measurement parameters. */
private CovarianceMatrixProvider measurementProcessNoiseMatrix;
/** Unscend transform provider. */
private UnscentedTransformProvider utProvider;
/** Default constructor.
* Set an Unscented Kalman filter.
*/
public UnscentedKalmanEstimatorBuilder() {
this.decomposer = new QRDecomposer(1.0e-15);
this.propagatorBuilders = new ArrayList<>();
this.estimatedMeasurementsParameters = new ParameterDriversList();
this.processNoiseMatrixProviders = new ArrayList<>();
this.measurementProcessNoiseMatrix = null;
this.utProvider = null;
}
/** Construct a {@link UnscentedKalmanEstimator} from the data in this builder.
* <p>
* Before this method is called, {@link #addPropagationConfiguration(NumericalPropagatorBuilder,
* CovarianceMatrixProvider) addPropagationConfiguration()} must have been called
* at least once, otherwise configuration is incomplete and an exception will be raised.
* <p>
* In addition, the {@link #unscentedTransformProvider(UnscentedTransformProvider)
* unscentedTransformProvider()} must be called to configure the unscented transform
* provider use during the estimation process, otherwise configuration is
* incomplete and an exception will be raised.
* </p>
* @return a new {@link UnscentedKalmanEstimator}.
*/
public UnscentedKalmanEstimator build() {
if (propagatorBuilders.size() == 0) {
throw new OrekitException(OrekitMessages.NO_PROPAGATOR_CONFIGURED);
}
if (utProvider == null) {
throw new OrekitException(OrekitMessages.NO_UNSCENTED_TRANSFORM_CONFIGURED);
}
return new UnscentedKalmanEstimator(decomposer, propagatorBuilders, processNoiseMatrixProviders,
estimatedMeasurementsParameters, measurementProcessNoiseMatrix,
utProvider);
}
/** Configure the matrix decomposer.
* @param matrixDecomposer decomposer to use for the correction phase
* @return this object.
*/
public UnscentedKalmanEstimatorBuilder decomposer(final MatrixDecomposer matrixDecomposer) {
decomposer = matrixDecomposer;
return this;
}
/** Configure the unscented transform provider.
* @param transformProvider unscented transform to use for the prediction phase
* @return this object.
*/
public UnscentedKalmanEstimatorBuilder unscentedTransformProvider(final UnscentedTransformProvider transformProvider) {
this.utProvider = transformProvider;
return this;
}
/** Add a propagation configuration.
* <p>
* This method must be called once for each propagator to managed with the
* {@link UnscentedKalmanEstimator unscented kalman estimatior}. The
* propagators order in the Kalman filter will be the call order.
* </p>
* <p>
* The {@code provider} should return a matrix with dimensions and ordering
* consistent with the {@code builder} configuration. The first 6 rows/columns
* correspond to the 6 orbital parameters which must all be present, regardless
* of the fact they are estimated or not. The remaining elements correspond
* to the subset of propagation parameters that are estimated, in the
* same order as propagatorBuilder.{@link
* org.orekit.propagation.conversion.PropagatorBuilder#getPropagationParametersDrivers()
* getPropagationParametersDrivers()}.{@link org.orekit.utils.ParameterDriversList#getDrivers()
* getDrivers()} (but filtering out the non selected drivers).
* </p>
* @param builder The propagator builder to use in the Kalman filter.
* @param provider The process noise matrices provider to use, consistent with the builder.
* @see CovarianceMatrixProvider#getProcessNoiseMatrix(org.orekit.propagation.SpacecraftState,
* org.orekit.propagation.SpacecraftState) getProcessNoiseMatrix(previous, current)
* @return this object.
*/
public UnscentedKalmanEstimatorBuilder addPropagationConfiguration(final NumericalPropagatorBuilder builder,
final CovarianceMatrixProvider provider) {
propagatorBuilders.add(builder);
processNoiseMatrixProviders.add(provider);
return this;
}
/** Configure the estimated measurement parameters.
* <p>
* If this method is not called, no measurement parameters will be estimated.
* </p>
* @param estimatedMeasurementsParams The estimated measurements' parameters list.
* @param provider covariance matrix provider for the estimated measurement parameters
* @return this object.
*/
public UnscentedKalmanEstimatorBuilder estimatedMeasurementsParameters(final ParameterDriversList estimatedMeasurementsParams,
final CovarianceMatrixProvider provider) {
estimatedMeasurementsParameters = estimatedMeasurementsParams;
measurementProcessNoiseMatrix = provider;
return this;
}
}