NumericalPropagator.java
/* Copyright 2002-2022 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.propagation.numerical;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import org.hipparchus.exception.LocalizedCoreFormats;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.linear.MatrixUtils;
import org.hipparchus.linear.QRDecomposition;
import org.hipparchus.linear.RealMatrix;
import org.hipparchus.ode.ODEIntegrator;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.Precision;
import org.orekit.annotation.DefaultDataContext;
import org.orekit.attitudes.Attitude;
import org.orekit.attitudes.AttitudeProvider;
import org.orekit.data.DataContext;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitIllegalArgumentException;
import org.orekit.errors.OrekitInternalError;
import org.orekit.errors.OrekitMessages;
import org.orekit.forces.ForceModel;
import org.orekit.forces.gravity.NewtonianAttraction;
import org.orekit.forces.inertia.InertialForces;
import org.orekit.forces.maneuvers.Maneuver;
import org.orekit.forces.maneuvers.jacobians.Duration;
import org.orekit.forces.maneuvers.jacobians.MedianDate;
import org.orekit.forces.maneuvers.jacobians.TriggerDate;
import org.orekit.forces.maneuvers.trigger.AbstractManeuverTriggers;
import org.orekit.forces.maneuvers.trigger.ManeuverTriggers;
import org.orekit.frames.Frame;
import org.orekit.orbits.Orbit;
import org.orekit.orbits.OrbitType;
import org.orekit.orbits.PositionAngle;
import org.orekit.propagation.AbstractMatricesHarvester;
import org.orekit.propagation.AdditionalStateProvider;
import org.orekit.propagation.MatricesHarvester;
import org.orekit.propagation.PropagationType;
import org.orekit.propagation.Propagator;
import org.orekit.propagation.SpacecraftState;
import org.orekit.propagation.events.EventDetector;
import org.orekit.propagation.events.ParameterDrivenDateIntervalDetector;
import org.orekit.propagation.integration.AbstractIntegratedPropagator;
import org.orekit.propagation.integration.AdditionalDerivativesProvider;
import org.orekit.propagation.integration.StateMapper;
import org.orekit.time.AbsoluteDate;
import org.orekit.utils.AbsolutePVCoordinates;
import org.orekit.utils.DoubleArrayDictionary;
import org.orekit.utils.PVCoordinates;
import org.orekit.utils.ParameterDriver;
import org.orekit.utils.ParameterDriversList;
import org.orekit.utils.ParameterDriversList.DelegatingDriver;
import org.orekit.utils.ParameterObserver;
import org.orekit.utils.TimeStampedPVCoordinates;
/** This class propagates {@link org.orekit.orbits.Orbit orbits} using
* numerical integration.
* <p>Numerical propagation is much more accurate than analytical propagation
* like for example {@link org.orekit.propagation.analytical.KeplerianPropagator
* Keplerian} or {@link org.orekit.propagation.analytical.EcksteinHechlerPropagator
* Eckstein-Hechler}, but requires a few more steps to set up to be used properly.
* Whereas analytical propagators are configured only thanks to their various
* constructors and can be used immediately after construction, numerical propagators
* configuration involve setting several parameters between construction time
* and propagation time.</p>
* <p>The configuration parameters that can be set are:</p>
* <ul>
* <li>the initial spacecraft state ({@link #setInitialState(SpacecraftState)})</li>
* <li>the central attraction coefficient ({@link #setMu(double)})</li>
* <li>the various force models ({@link #addForceModel(ForceModel)},
* {@link #removeForceModels()})</li>
* <li>the {@link OrbitType type} of orbital parameters to be used for propagation
* ({@link #setOrbitType(OrbitType)}),</li>
* <li>the {@link PositionAngle type} of position angle to be used in orbital parameters
* to be used for propagation where it is relevant ({@link
* #setPositionAngleType(PositionAngle)}),</li>
* <li>whether {@link MatricesHarvester state transition matrices and Jacobians matrices}
* should be propagated along with orbital state ({@link
* #setupMatricesComputation(String, RealMatrix, DoubleArrayDictionary)}),</li>
* <li>whether {@link org.orekit.propagation.integration.AdditionalDerivativesProvider additional derivatives}
* should be propagated along with orbital state ({@link
* #addAdditionalDerivativesProvider(AdditionalDerivativesProvider)}),</li>
* <li>the discrete events that should be triggered during propagation
* ({@link #addEventDetector(EventDetector)},
* {@link #clearEventsDetectors()})</li>
* <li>the binding logic with the rest of the application ({@link #getMultiplexer()})</li>
* </ul>
* <p>From these configuration parameters, only the initial state is mandatory. The default
* propagation settings are in {@link OrbitType#EQUINOCTIAL equinoctial} parameters with
* {@link PositionAngle#TRUE true} longitude argument. If the central attraction coefficient
* is not explicitly specified, the one used to define the initial orbit will be used.
* However, specifying only the initial state and perhaps the central attraction coefficient
* would mean the propagator would use only Keplerian forces. In this case, the simpler {@link
* org.orekit.propagation.analytical.KeplerianPropagator KeplerianPropagator} class would
* perhaps be more effective.</p>
* <p>The underlying numerical integrator set up in the constructor may also have its own
* configuration parameters. Typical configuration parameters for adaptive stepsize integrators
* are the min, max and perhaps start step size as well as the absolute and/or relative errors
* thresholds.</p>
* <p>The state that is seen by the integrator is a simple seven elements double array.
* The six first elements are either:
* <ul>
* <li>the {@link org.orekit.orbits.EquinoctialOrbit equinoctial orbit parameters} (a, e<sub>x</sub>,
* e<sub>y</sub>, h<sub>x</sub>, h<sub>y</sub>, λ<sub>M</sub> or λ<sub>E</sub>
* or λ<sub>v</sub>) in meters and radians,</li>
* <li>the {@link org.orekit.orbits.KeplerianOrbit Keplerian orbit parameters} (a, e, i, ω, Ω,
* M or E or v) in meters and radians,</li>
* <li>the {@link org.orekit.orbits.CircularOrbit circular orbit parameters} (a, e<sub>x</sub>, e<sub>y</sub>, i,
* Ω, α<sub>M</sub> or α<sub>E</sub> or α<sub>v</sub>) in meters
* and radians,</li>
* <li>the {@link org.orekit.orbits.CartesianOrbit Cartesian orbit parameters} (x, y, z, v<sub>x</sub>,
* v<sub>y</sub>, v<sub>z</sub>) in meters and meters per seconds.
* </ul>
* <p> The last element is the mass in kilograms and changes only during thrusters firings
*
* <p>The following code snippet shows a typical setting for Low Earth Orbit propagation in
* equinoctial parameters and true longitude argument:</p>
* <pre>
* final double dP = 0.001;
* final double minStep = 0.001;
* final double maxStep = 500;
* final double initStep = 60;
* final double[][] tolerance = NumericalPropagator.tolerances(dP, orbit, OrbitType.EQUINOCTIAL);
* AdaptiveStepsizeIntegrator integrator = new DormandPrince853Integrator(minStep, maxStep, tolerance[0], tolerance[1]);
* integrator.setInitialStepSize(initStep);
* propagator = new NumericalPropagator(integrator);
* </pre>
* <p>By default, at the end of the propagation, the propagator resets the initial state to the final state,
* thus allowing a new propagation to be started from there without recomputing the part already performed.
* This behaviour can be chenged by calling {@link #setResetAtEnd(boolean)}.
* </p>
* <p>Beware the same instance cannot be used simultaneously by different threads, the class is <em>not</em>
* thread-safe.</p>
*
* @see SpacecraftState
* @see ForceModel
* @see org.orekit.propagation.sampling.OrekitStepHandler
* @see org.orekit.propagation.sampling.OrekitFixedStepHandler
* @see org.orekit.propagation.integration.IntegratedEphemeris
* @see TimeDerivativesEquations
*
* @author Mathieu Roméro
* @author Luc Maisonobe
* @author Guylaine Prat
* @author Fabien Maussion
* @author Véronique Pommier-Maurussane
*/
public class NumericalPropagator extends AbstractIntegratedPropagator {
/** Space dimension. */
private static final int SPACE_DIMENSION = 3;
/** State dimension. */
private static final int STATE_DIMENSION = 2 * SPACE_DIMENSION;
/** Threshold for matrix solving. */
private static final double THRESHOLD = Precision.SAFE_MIN;
/** Force models used during the extrapolation of the orbit. */
private final List<ForceModel> forceModels;
/** boolean to ignore or not the creation of a NewtonianAttraction. */
private boolean ignoreCentralAttraction;
/** Create a new instance of NumericalPropagator, based on orbit definition mu.
* After creation, the instance is empty, i.e. the attitude provider is set to an
* unspecified default law and there are no perturbing forces at all.
* This means that if {@link #addForceModel addForceModel} is not
* called after creation, the integrated orbit will follow a Keplerian
* evolution only. The defaults are {@link OrbitType#EQUINOCTIAL}
* for {@link #setOrbitType(OrbitType) propagation
* orbit type} and {@link PositionAngle#TRUE} for {@link
* #setPositionAngleType(PositionAngle) position angle type}.
*
* <p>This constructor uses the {@link DataContext#getDefault() default data context}.
*
* @param integrator numerical integrator to use for propagation.
* @see #NumericalPropagator(ODEIntegrator, AttitudeProvider)
*/
@DefaultDataContext
public NumericalPropagator(final ODEIntegrator integrator) {
this(integrator,
Propagator.getDefaultLaw(DataContext.getDefault().getFrames()));
}
/** Create a new instance of NumericalPropagator, based on orbit definition mu.
* After creation, the instance is empty, i.e. the attitude provider is set to an
* unspecified default law and there are no perturbing forces at all.
* This means that if {@link #addForceModel addForceModel} is not
* called after creation, the integrated orbit will follow a Keplerian
* evolution only. The defaults are {@link OrbitType#EQUINOCTIAL}
* for {@link #setOrbitType(OrbitType) propagation
* orbit type} and {@link PositionAngle#TRUE} for {@link
* #setPositionAngleType(PositionAngle) position angle type}.
* @param integrator numerical integrator to use for propagation.
* @param attitudeProvider the attitude law.
* @since 10.1
*/
public NumericalPropagator(final ODEIntegrator integrator,
final AttitudeProvider attitudeProvider) {
super(integrator, PropagationType.OSCULATING);
forceModels = new ArrayList<ForceModel>();
ignoreCentralAttraction = false;
initMapper();
setAttitudeProvider(attitudeProvider);
clearStepHandlers();
setOrbitType(OrbitType.EQUINOCTIAL);
setPositionAngleType(PositionAngle.TRUE);
}
/** Set the flag to ignore or not the creation of a {@link NewtonianAttraction}.
* @param ignoreCentralAttraction if true, {@link NewtonianAttraction} is <em>not</em>
* added automatically if missing
*/
public void setIgnoreCentralAttraction(final boolean ignoreCentralAttraction) {
this.ignoreCentralAttraction = ignoreCentralAttraction;
}
/** Set the central attraction coefficient μ.
* <p>
* Setting the central attraction coefficient is
* equivalent to {@link #addForceModel(ForceModel) add}
* a {@link NewtonianAttraction} force model.
* </p>
* @param mu central attraction coefficient (m³/s²)
* @see #addForceModel(ForceModel)
* @see #getAllForceModels()
*/
public void setMu(final double mu) {
if (ignoreCentralAttraction) {
superSetMu(mu);
} else {
addForceModel(new NewtonianAttraction(mu));
}
}
/** Set the central attraction coefficient μ only in upper class.
* @param mu central attraction coefficient (m³/s²)
*/
private void superSetMu(final double mu) {
super.setMu(mu);
}
/** Check if Newtonian attraction force model is available.
* <p>
* Newtonian attraction is always the last force model in the list.
* </p>
* @return true if Newtonian attraction force model is available
*/
private boolean hasNewtonianAttraction() {
final int last = forceModels.size() - 1;
return last >= 0 && forceModels.get(last) instanceof NewtonianAttraction;
}
/** Add a force model.
* <p>If this method is not called at all, the integrated orbit will follow
* a Keplerian evolution only.</p>
* @param model {@link ForceModel} to add (it can be either a perturbing force
* model or an instance of {@link NewtonianAttraction})
* @see #removeForceModels()
* @see #setMu(double)
*/
public void addForceModel(final ForceModel model) {
if (model instanceof NewtonianAttraction) {
// we want to add the central attraction force model
try {
// ensure we are notified of any mu change
model.getParametersDrivers().get(0).addObserver(new ParameterObserver() {
/** {@inheritDoc} */
@Override
public void valueChanged(final double previousValue, final ParameterDriver driver) {
superSetMu(driver.getValue());
}
});
} catch (OrekitException oe) {
// this should never happen
throw new OrekitInternalError(oe);
}
if (hasNewtonianAttraction()) {
// there is already a central attraction model, replace it
forceModels.set(forceModels.size() - 1, model);
} else {
// there are no central attraction model yet, add it at the end of the list
forceModels.add(model);
}
} else {
// we want to add a perturbing force model
if (hasNewtonianAttraction()) {
// insert the new force model before Newtonian attraction,
// which should always be the last one in the list
forceModels.add(forceModels.size() - 1, model);
} else {
// we only have perturbing force models up to now, just append at the end of the list
forceModels.add(model);
}
}
}
/** Remove all force models (except central attraction).
* <p>Once all perturbing forces have been removed (and as long as no new force
* model is added), the integrated orbit will follow a Keplerian evolution
* only.</p>
* @see #addForceModel(ForceModel)
*/
public void removeForceModels() {
final int last = forceModels.size() - 1;
if (hasNewtonianAttraction()) {
// preserve the Newtonian attraction model at the end
final ForceModel newton = forceModels.get(last);
forceModels.clear();
forceModels.add(newton);
} else {
forceModels.clear();
}
}
/** Get all the force models, perturbing forces and Newtonian attraction included.
* @return list of perturbing force models, with Newtonian attraction being the
* last one
* @see #addForceModel(ForceModel)
* @see #setMu(double)
*/
public List<ForceModel> getAllForceModels() {
return Collections.unmodifiableList(forceModels);
}
/** Set propagation orbit type.
* @param orbitType orbit type to use for propagation, null for
* propagating using {@link org.orekit.utils.AbsolutePVCoordinates} rather than {@link Orbit}
*/
public void setOrbitType(final OrbitType orbitType) {
super.setOrbitType(orbitType);
}
/** Get propagation parameter type.
* @return orbit type used for propagation, null for
* propagating using {@link org.orekit.utils.AbsolutePVCoordinates} rather than {@link Orbit}
*/
public OrbitType getOrbitType() {
return super.getOrbitType();
}
/** Set position angle type.
* <p>
* The position parameter type is meaningful only if {@link
* #getOrbitType() propagation orbit type}
* support it. As an example, it is not meaningful for propagation
* in {@link OrbitType#CARTESIAN Cartesian} parameters.
* </p>
* @param positionAngleType angle type to use for propagation
*/
public void setPositionAngleType(final PositionAngle positionAngleType) {
super.setPositionAngleType(positionAngleType);
}
/** Get propagation parameter type.
* @return angle type to use for propagation
*/
public PositionAngle getPositionAngleType() {
return super.getPositionAngleType();
}
/** Set the initial state.
* @param initialState initial state
*/
public void setInitialState(final SpacecraftState initialState) {
resetInitialState(initialState);
}
/** {@inheritDoc} */
public void resetInitialState(final SpacecraftState state) {
super.resetInitialState(state);
if (!hasNewtonianAttraction()) {
// use the state to define central attraction
setMu(state.getMu());
}
setStartDate(state.getDate());
}
/** Get the names of the parameters in the matrix returned by {@link MatricesHarvester#getParametersJacobian}.
* @return names of the parameters (i.e. columns) of the Jacobian matrix
*/
List<String> getJacobiansColumnsNames() {
final List<String> columnsNames = new ArrayList<>();
for (final ForceModel forceModel : getAllForceModels()) {
for (final ParameterDriver driver : forceModel.getParametersDrivers()) {
if (driver.isSelected() && !columnsNames.contains(driver.getName())) {
columnsNames.add(driver.getName());
}
}
}
Collections.sort(columnsNames);
return columnsNames;
}
/** {@inheritDoc} */
@Override
protected AbstractMatricesHarvester createHarvester(final String stmName, final RealMatrix initialStm,
final DoubleArrayDictionary initialJacobianColumns) {
return new NumericalPropagationHarvester(this, stmName, initialStm, initialJacobianColumns);
}
/** {@inheritDoc} */
@Override
protected void setUpStmAndJacobianGenerators() {
final AbstractMatricesHarvester harvester = getHarvester();
if (harvester != null) {
// set up the additional equations and additional state providers
final StateTransitionMatrixGenerator stmGenerator = setUpStmGenerator();
final List<String> triggersDates = setUpTriggerDatesJacobiansColumns(stmGenerator.getName());
setUpRegularParametersJacobiansColumns(stmGenerator, triggersDates);
// as we are now starting the propagation, everything is configured
// we can freeze the names in the harvester
harvester.freezeColumnsNames();
}
}
/** Set up the State Transition Matrix Generator.
* @return State Transition Matrix Generator
* @since 11.1
*/
private StateTransitionMatrixGenerator setUpStmGenerator() {
final AbstractMatricesHarvester harvester = getHarvester();
// add the STM generator corresponding to the current settings, and setup state accordingly
StateTransitionMatrixGenerator stmGenerator = null;
for (final AdditionalDerivativesProvider equations : getAdditionalDerivativesProviders()) {
if (equations instanceof StateTransitionMatrixGenerator &&
equations.getName().equals(harvester.getStmName())) {
// the STM generator has already been set up in a previous propagation
stmGenerator = (StateTransitionMatrixGenerator) equations;
break;
}
}
if (stmGenerator == null) {
// this is the first time we need the STM generate, create it
stmGenerator = new StateTransitionMatrixGenerator(harvester.getStmName(), getAllForceModels(), getAttitudeProvider());
addAdditionalDerivativesProvider(stmGenerator);
}
if (!getInitialIntegrationState().hasAdditionalState(harvester.getStmName())) {
// add the initial State Transition Matrix if it is not already there
// (perhaps due to a previous propagation)
setInitialState(stmGenerator.setInitialStateTransitionMatrix(getInitialState(),
harvester.getInitialStateTransitionMatrix(),
getOrbitType(),
getPositionAngleType()));
}
return stmGenerator;
}
/** Set up the Jacobians columns generator dedicated to trigger dates.
* @param stmName name of the State Transition Matrix state
* @return names of the columns corresponding to trigger dates
* @since 11.1
*/
private List<String> setUpTriggerDatesJacobiansColumns(final String stmName) {
final List<String> names = new ArrayList<>();
for (final ForceModel forceModel : getAllForceModels()) {
if (forceModel instanceof Maneuver) {
final Maneuver maneuver = (Maneuver) forceModel;
final ManeuverTriggers maneuverTriggers = maneuver.getManeuverTriggers();
if (maneuverTriggers instanceof AbstractManeuverTriggers) {
// FIXME: when issue https://gitlab.orekit.org/orekit/orekit/-/issues/854 is solved
// the previous if statement and the following cast should be removed as the following
// code should really be done for all ManeuverTriggers and not only AbstractManeuverTriggers
final AbstractManeuverTriggers amt = (AbstractManeuverTriggers) maneuverTriggers;
amt.getEventsDetectors().
filter(d -> d instanceof ParameterDrivenDateIntervalDetector).
map (d -> (ParameterDrivenDateIntervalDetector) d).
forEach(d -> {
if (d.getStartDriver().isSelected() || d.getMedianDriver().isSelected() || d.getDurationDriver().isSelected()) {
final TriggerDate start =
manageTriggerDate(stmName, maneuver, amt, d.getStartDriver().getName(), true, d.getThreshold());
names.add(start.getName());
}
if (d.getStopDriver().isSelected() || d.getMedianDriver().isSelected() || d.getDurationDriver().isSelected()) {
final TriggerDate stop =
manageTriggerDate(stmName, maneuver, amt, d.getStopDriver().getName(), false, d.getThreshold());
names.add(stop.getName());
}
if (d.getMedianDriver().isSelected()) {
final MedianDate median =
manageMedianDate(d.getStartDriver().getName(), d.getStopDriver().getName(), d.getMedianDriver().getName());
names.add(median.getName());
}
if (d.getDurationDriver().isSelected()) {
final Duration duration =
manageManeuverDuration(d.getStartDriver().getName(), d.getStopDriver().getName(), d.getDurationDriver().getName());
names.add(duration.getName());
}
});
}
}
}
return names;
}
/** Manage a maneuver trigger date.
* @param stmName name of the State Transition Matrix state
* @param maneuver maneuver force model
* @param amt trigger to which the driver is bound
* @param driverName name of the date driver
* @param start if true, the driver is a maneuver start
* @param threshold event detector threshold
* @return generator for the date driver
* @since 11.1
*/
private TriggerDate manageTriggerDate(final String stmName,
final Maneuver maneuver,
final AbstractManeuverTriggers amt,
final String driverName,
final boolean start,
final double threshold) {
TriggerDate triggerGenerator = null;
// check if we already have set up the provider
for (final AdditionalStateProvider provider : getAdditionalStateProviders()) {
if (provider instanceof TriggerDate &&
provider.getName().equals(driverName)) {
// the Jacobian column generator has already been set up in a previous propagation
triggerGenerator = (TriggerDate) provider;
break;
}
}
if (triggerGenerator == null) {
// this is the first time we need the Jacobian column generator, create it
triggerGenerator = new TriggerDate(stmName, driverName, start, maneuver, threshold);
amt.addResetter(triggerGenerator);
addAdditionalDerivativesProvider(triggerGenerator.getMassDepletionDelay());
addAdditionalStateProvider(triggerGenerator);
}
if (!getInitialIntegrationState().hasAdditionalState(driverName)) {
// add the initial Jacobian column if it is not already there
// (perhaps due to a previous propagation)
setInitialColumn(triggerGenerator.getMassDepletionDelay().getName(), new double[6]);
setInitialColumn(driverName, getHarvester().getInitialJacobianColumn(driverName));
}
return triggerGenerator;
}
/** Manage a maneuver median date.
* @param startName name of the start driver
* @param stopName name of the stop driver
* @param medianName name of the median driver
* @return generator for the median driver
* @since 11.1
*/
private MedianDate manageMedianDate(final String startName, final String stopName, final String medianName) {
MedianDate medianGenerator = null;
// check if we already have set up the provider
for (final AdditionalStateProvider provider : getAdditionalStateProviders()) {
if (provider instanceof MedianDate &&
provider.getName().equals(medianName)) {
// the Jacobian column generator has already been set up in a previous propagation
medianGenerator = (MedianDate) provider;
break;
}
}
if (medianGenerator == null) {
// this is the first time we need the Jacobian column generator, create it
medianGenerator = new MedianDate(startName, stopName, medianName);
addAdditionalStateProvider(medianGenerator);
}
if (!getInitialIntegrationState().hasAdditionalState(medianName)) {
// add the initial Jacobian column if it is not already there
// (perhaps due to a previous propagation)
setInitialColumn(medianName, getHarvester().getInitialJacobianColumn(medianName));
}
return medianGenerator;
}
/** Manage a maneuver duration.
* @param startName name of the start driver
* @param stopName name of the stop driver
* @param durationName name of the duration driver
* @return generator for the median driver
* @since 11.1
*/
private Duration manageManeuverDuration(final String startName, final String stopName, final String durationName) {
Duration durationGenerator = null;
// check if we already have set up the provider
for (final AdditionalStateProvider provider : getAdditionalStateProviders()) {
if (provider instanceof Duration &&
provider.getName().equals(durationName)) {
// the Jacobian column generator has already been set up in a previous propagation
durationGenerator = (Duration) provider;
break;
}
}
if (durationGenerator == null) {
// this is the first time we need the Jacobian column generator, create it
durationGenerator = new Duration(startName, stopName, durationName);
addAdditionalStateProvider(durationGenerator);
}
if (!getInitialIntegrationState().hasAdditionalState(durationName)) {
// add the initial Jacobian column if it is not already there
// (perhaps due to a previous propagation)
setInitialColumn(durationName, getHarvester().getInitialJacobianColumn(durationName));
}
return durationGenerator;
}
/** Set up the Jacobians columns generator for regular parameters.
* @param stmGenerator generator for the State Transition Matrix
* @param triggerDates names of the columns already managed as trigger dates
* @since 11.1
*/
private void setUpRegularParametersJacobiansColumns(final StateTransitionMatrixGenerator stmGenerator,
final List<String> triggerDates) {
// first pass: gather all parameters (excluding trigger dates), binding similar names together
final ParameterDriversList selected = new ParameterDriversList();
for (final ForceModel forceModel : getAllForceModels()) {
for (final ParameterDriver driver : forceModel.getParametersDrivers()) {
if (!triggerDates.contains(driver.getName())) {
selected.add(driver);
}
}
}
// second pass: now that shared parameter names are bound together,
// their selections status have been synchronized, we can filter them
selected.filter(true);
// third pass: sort parameters lexicographically
selected.sort();
// add the Jacobians column generators corresponding to parameters, and setup state accordingly
for (final DelegatingDriver driver : selected.getDrivers()) {
IntegrableJacobianColumnGenerator generator = null;
// check if we already have set up the providers
for (final AdditionalDerivativesProvider provider : getAdditionalDerivativesProviders()) {
if (provider instanceof IntegrableJacobianColumnGenerator &&
provider.getName().equals(driver.getName())) {
// the Jacobian column generator has already been set up in a previous propagation
generator = (IntegrableJacobianColumnGenerator) provider;
break;
}
}
if (generator == null) {
// this is the first time we need the Jacobian column generator, create it
generator = new IntegrableJacobianColumnGenerator(stmGenerator, driver.getName());
addAdditionalDerivativesProvider(generator);
}
if (!getInitialIntegrationState().hasAdditionalState(driver.getName())) {
// add the initial Jacobian column if it is not already there
// (perhaps due to a previous propagation)
setInitialColumn(driver.getName(), getHarvester().getInitialJacobianColumn(driver.getName()));
}
}
}
/** Add the initial value of the column to the initial state.
* <p>
* The initial state must already contain the Cartesian State Transition Matrix.
* </p>
* @param columnName name of the column
* @param dYdQ column of the Jacobian ∂Y/∂qₘ with respect to propagation type,
* if null (which is the most frequent case), assumed to be 0
* @since 11.1
*/
private void setInitialColumn(final String columnName, final double[] dYdQ) {
final SpacecraftState state = getInitialState();
if (dYdQ.length != STATE_DIMENSION) {
throw new OrekitException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
dYdQ.length, STATE_DIMENSION);
}
// convert to Cartesian Jacobian
final double[][] dYdC = new double[STATE_DIMENSION][STATE_DIMENSION];
getOrbitType().convertType(state.getOrbit()).getJacobianWrtCartesian(getPositionAngleType(), dYdC);
final double[] column = new QRDecomposition(MatrixUtils.createRealMatrix(dYdC), THRESHOLD).
getSolver().
solve(MatrixUtils.createRealVector(dYdQ)).
toArray();
// set additional state
setInitialState(state.addAdditionalState(columnName, column));
}
/** {@inheritDoc} */
@Override
public TimeStampedPVCoordinates getPVCoordinates(final AbsoluteDate date, final Frame frame) {
return propagate(date).getPVCoordinates(frame);
}
/** {@inheritDoc} */
@Override
protected StateMapper createMapper(final AbsoluteDate referenceDate, final double mu,
final OrbitType orbitType, final PositionAngle positionAngleType,
final AttitudeProvider attitudeProvider, final Frame frame) {
return new OsculatingMapper(referenceDate, mu, orbitType, positionAngleType, attitudeProvider, frame);
}
/** Internal mapper using directly osculating parameters. */
private static class OsculatingMapper extends StateMapper {
/** Simple constructor.
* <p>
* The position parameter type is meaningful only if {@link
* #getOrbitType() propagation orbit type}
* support it. As an example, it is not meaningful for propagation
* in {@link OrbitType#CARTESIAN Cartesian} parameters.
* </p>
* @param referenceDate reference date
* @param mu central attraction coefficient (m³/s²)
* @param orbitType orbit type to use for mapping (can be null for {@link AbsolutePVCoordinates})
* @param positionAngleType angle type to use for propagation
* @param attitudeProvider attitude provider
* @param frame inertial frame
*/
OsculatingMapper(final AbsoluteDate referenceDate, final double mu,
final OrbitType orbitType, final PositionAngle positionAngleType,
final AttitudeProvider attitudeProvider, final Frame frame) {
super(referenceDate, mu, orbitType, positionAngleType, attitudeProvider, frame);
}
/** {@inheritDoc} */
public SpacecraftState mapArrayToState(final AbsoluteDate date, final double[] y, final double[] yDot,
final PropagationType type) {
// the parameter type is ignored for the Numerical Propagator
final double mass = y[6];
if (mass <= 0.0) {
throw new OrekitException(OrekitMessages.SPACECRAFT_MASS_BECOMES_NEGATIVE, mass);
}
if (getOrbitType() == null) {
// propagation uses absolute position-velocity-acceleration
final Vector3D p = new Vector3D(y[0], y[1], y[2]);
final Vector3D v = new Vector3D(y[3], y[4], y[5]);
final Vector3D a;
final AbsolutePVCoordinates absPva;
if (yDot == null) {
absPva = new AbsolutePVCoordinates(getFrame(), new TimeStampedPVCoordinates(date, p, v));
} else {
a = new Vector3D(yDot[3], yDot[4], yDot[5]);
absPva = new AbsolutePVCoordinates(getFrame(), new TimeStampedPVCoordinates(date, p, v, a));
}
final Attitude attitude = getAttitudeProvider().getAttitude(absPva, date, getFrame());
return new SpacecraftState(absPva, attitude, mass);
} else {
// propagation uses regular orbits
final Orbit orbit = getOrbitType().mapArrayToOrbit(y, yDot, getPositionAngleType(), date, getMu(), getFrame());
final Attitude attitude = getAttitudeProvider().getAttitude(orbit, date, getFrame());
return new SpacecraftState(orbit, attitude, mass);
}
}
/** {@inheritDoc} */
public void mapStateToArray(final SpacecraftState state, final double[] y, final double[] yDot) {
if (getOrbitType() == null) {
// propagation uses absolute position-velocity-acceleration
final Vector3D p = state.getAbsPVA().getPosition();
final Vector3D v = state.getAbsPVA().getVelocity();
y[0] = p.getX();
y[1] = p.getY();
y[2] = p.getZ();
y[3] = v.getX();
y[4] = v.getY();
y[5] = v.getZ();
y[6] = state.getMass();
}
else {
getOrbitType().mapOrbitToArray(state.getOrbit(), getPositionAngleType(), y, yDot);
y[6] = state.getMass();
}
}
}
/** {@inheritDoc} */
protected MainStateEquations getMainStateEquations(final ODEIntegrator integrator) {
return new Main(integrator);
}
/** Internal class for osculating parameters integration. */
private class Main implements MainStateEquations, TimeDerivativesEquations {
/** Derivatives array. */
private final double[] yDot;
/** Current state. */
private SpacecraftState currentState;
/** Jacobian of the orbital parameters with respect to the Cartesian parameters. */
private double[][] jacobian;
/** Simple constructor.
* @param integrator numerical integrator to use for propagation.
*/
Main(final ODEIntegrator integrator) {
this.yDot = new double[7];
this.jacobian = new double[6][6];
for (final ForceModel forceModel : forceModels) {
forceModel.getEventsDetectors().forEach(detector -> setUpEventDetector(integrator, detector));
}
if (getOrbitType() == null) {
// propagation uses absolute position-velocity-acceleration
// we can set Jacobian once and for all
for (int i = 0; i < jacobian.length; ++i) {
Arrays.fill(jacobian[i], 0.0);
jacobian[i][i] = 1.0;
}
}
}
/** {@inheritDoc} */
@Override
public void init(final SpacecraftState initialState, final AbsoluteDate target) {
forceModels.forEach(fm -> fm.init(initialState, target));
}
/** {@inheritDoc} */
@Override
public double[] computeDerivatives(final SpacecraftState state) {
currentState = state;
Arrays.fill(yDot, 0.0);
if (getOrbitType() != null) {
// propagation uses regular orbits
currentState.getOrbit().getJacobianWrtCartesian(getPositionAngleType(), jacobian);
}
// compute the contributions of all perturbing forces,
// using the Kepler contribution at the end since
// NewtonianAttraction is always the last instance in the list
for (final ForceModel forceModel : forceModels) {
forceModel.addContribution(state, this);
}
if (getOrbitType() == null) {
// position derivative is velocity, and was not added above in the force models
// (it is added when orbit type is non-null because NewtonianAttraction considers it)
final Vector3D velocity = currentState.getPVCoordinates().getVelocity();
yDot[0] += velocity.getX();
yDot[1] += velocity.getY();
yDot[2] += velocity.getZ();
}
return yDot.clone();
}
/** {@inheritDoc} */
@Override
public void addKeplerContribution(final double mu) {
if (getOrbitType() == null) {
// if mu is neither 0 nor NaN, we want to include Newtonian acceleration
if (mu > 0) {
// velocity derivative is Newtonian acceleration
final Vector3D position = currentState.getPVCoordinates().getPosition();
final double r2 = position.getNormSq();
final double coeff = -mu / (r2 * FastMath.sqrt(r2));
yDot[3] += coeff * position.getX();
yDot[4] += coeff * position.getY();
yDot[5] += coeff * position.getZ();
}
} else {
// propagation uses regular orbits
currentState.getOrbit().addKeplerContribution(getPositionAngleType(), mu, yDot);
}
}
/** {@inheritDoc} */
public void addNonKeplerianAcceleration(final Vector3D gamma) {
for (int i = 0; i < 6; ++i) {
final double[] jRow = jacobian[i];
yDot[i] += jRow[3] * gamma.getX() + jRow[4] * gamma.getY() + jRow[5] * gamma.getZ();
}
}
/** {@inheritDoc} */
@Override
public void addMassDerivative(final double q) {
if (q > 0) {
throw new OrekitIllegalArgumentException(OrekitMessages.POSITIVE_FLOW_RATE, q);
}
yDot[6] += q;
}
}
/** Estimate tolerance vectors for integrators when propagating in absolute position-velocity-acceleration.
* @param dP user specified position error
* @param absPva reference absolute position-velocity-acceleration
* @return a two rows array, row 0 being the absolute tolerance error and row 1
* being the relative tolerance error
* @see NumericalPropagator#tolerances(double, Orbit, OrbitType)
*/
public static double[][] tolerances(final double dP, final AbsolutePVCoordinates absPva) {
final double relative = dP / absPva.getPosition().getNorm();
final double dV = relative * absPva.getVelocity().getNorm();
final double[] absTol = new double[7];
final double[] relTol = new double[7];
absTol[0] = dP;
absTol[1] = dP;
absTol[2] = dP;
absTol[3] = dV;
absTol[4] = dV;
absTol[5] = dV;
// we set the mass tolerance arbitrarily to 1.0e-6 kg, as mass evolves linearly
// with trust, this often has no influence at all on propagation
absTol[6] = 1.0e-6;
Arrays.fill(relTol, relative);
return new double[][] {
absTol, relTol
};
}
/** Estimate tolerance vectors for integrators when propagating in orbits.
* <p>
* The errors are estimated from partial derivatives properties of orbits,
* starting from a scalar position error specified by the user.
* Considering the energy conservation equation V = sqrt(mu (2/r - 1/a)),
* we get at constant energy (i.e. on a Keplerian trajectory):
* <pre>
* V r² |dV| = mu |dr|
* </pre>
* <p> So we deduce a scalar velocity error consistent with the position error.
* From here, we apply orbits Jacobians matrices to get consistent errors
* on orbital parameters.
*
* <p>
* The tolerances are only <em>orders of magnitude</em>, and integrator tolerances
* are only local estimates, not global ones. So some care must be taken when using
* these tolerances. Setting 1mm as a position error does NOT mean the tolerances
* will guarantee a 1mm error position after several orbits integration.
* </p>
* @param dP user specified position error
* @param orbit reference orbit
* @param type propagation type for the meaning of the tolerance vectors elements
* (it may be different from {@code orbit.getType()})
* @return a two rows array, row 0 being the absolute tolerance error and row 1
* being the relative tolerance error
*/
public static double[][] tolerances(final double dP, final Orbit orbit, final OrbitType type) {
// estimate the scalar velocity error
final PVCoordinates pv = orbit.getPVCoordinates();
final double r2 = pv.getPosition().getNormSq();
final double v = pv.getVelocity().getNorm();
final double dV = orbit.getMu() * dP / (v * r2);
return tolerances(dP, dV, orbit, type);
}
/** Estimate tolerance vectors for integrators when propagating in orbits.
* <p>
* The errors are estimated from partial derivatives properties of orbits,
* starting from scalar position and velocity errors specified by the user.
* <p>
* The tolerances are only <em>orders of magnitude</em>, and integrator tolerances
* are only local estimates, not global ones. So some care must be taken when using
* these tolerances. Setting 1mm as a position error does NOT mean the tolerances
* will guarantee a 1mm error position after several orbits integration.
* </p>
* @param dP user specified position error
* @param dV user specified velocity error
* @param orbit reference orbit
* @param type propagation type for the meaning of the tolerance vectors elements
* (it may be different from {@code orbit.getType()})
* @return a two rows array, row 0 being the absolute tolerance error and row 1
* being the relative tolerance error
* @since 10.3
*/
public static double[][] tolerances(final double dP, final double dV,
final Orbit orbit, final OrbitType type) {
final double[] absTol = new double[7];
final double[] relTol = new double[7];
// we set the mass tolerance arbitrarily to 1.0e-6 kg, as mass evolves linearly
// with trust, this often has no influence at all on propagation
absTol[6] = 1.0e-6;
if (type == OrbitType.CARTESIAN) {
absTol[0] = dP;
absTol[1] = dP;
absTol[2] = dP;
absTol[3] = dV;
absTol[4] = dV;
absTol[5] = dV;
} else {
// convert the orbit to the desired type
final double[][] jacobian = new double[6][6];
final Orbit converted = type.convertType(orbit);
converted.getJacobianWrtCartesian(PositionAngle.TRUE, jacobian);
for (int i = 0; i < 6; ++i) {
final double[] row = jacobian[i];
absTol[i] = FastMath.abs(row[0]) * dP +
FastMath.abs(row[1]) * dP +
FastMath.abs(row[2]) * dP +
FastMath.abs(row[3]) * dV +
FastMath.abs(row[4]) * dV +
FastMath.abs(row[5]) * dV;
if (Double.isNaN(absTol[i])) {
throw new OrekitException(OrekitMessages.SINGULAR_JACOBIAN_FOR_ORBIT_TYPE, type);
}
}
}
Arrays.fill(relTol, dP / FastMath.sqrt(orbit.getPVCoordinates().getPosition().getNormSq()));
return new double[][] {
absTol, relTol
};
}
/** {@inheritDoc} */
@Override
protected void beforeIntegration(final SpacecraftState initialState, final AbsoluteDate tEnd) {
if (!getFrame().isPseudoInertial()) {
// inspect all force models to find InertialForces
for (ForceModel force : forceModels) {
if (force instanceof InertialForces) {
return;
}
}
// throw exception if no inertial forces found
throw new OrekitException(OrekitMessages.INERTIAL_FORCE_MODEL_MISSING, getFrame().getName());
}
}
}