JacobiPolynomials.java
/* Copyright 2002-2022 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.propagation.semianalytical.dsst.utilities;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.analysis.differentiation.FieldGradient;
import org.hipparchus.analysis.differentiation.Gradient;
import org.hipparchus.analysis.polynomials.PolynomialFunction;
import org.hipparchus.analysis.polynomials.PolynomialsUtils;
import org.orekit.propagation.semianalytical.dsst.forces.DSSTThirdBody;
/** Provider of the Jacobi polynomials P<sub>l</sub><sup>v,w</sup>.
* <p>
* This class is used for {@link
* org.orekit.propagation.semianalytical.dsst.forces.DSSTTesseral
* tesseral contribution} computation and {@link DSSTThirdBody}.
* </p>
*
* @author Nicolas Bernard
* @since 6.1
*/
public class JacobiPolynomials {
/** Storage map. */
private static final Map<JacobiKey, List<PolynomialFunction>> MAP =
new HashMap<JacobiKey, List<PolynomialFunction>>();
/** Private constructor as class is a utility. */
private JacobiPolynomials() {
}
/** Returns the value and derivatives of the Jacobi polynomial P<sub>l</sub><sup>v,w</sup> evaluated at γ.
* <p>This method is guaranteed to be thread-safe
* <p>It was added to improve performances of DSST propagation with tesseral gravity field or third-body perturbations.
* <p>See issue <a href="https://gitlab.orekit.org/orekit/orekit/-/issues/1098">1098</a>.
* <p>It appeared the "Gradient" version was degrading performances. This last was however kept for validation purposes.
* @param l degree of the polynomial
* @param v v value
* @param w w value
* @param x x value
* @return value and derivatives of the Jacobi polynomial P<sub>l</sub><sup>v,w</sup>(γ)
* @since 11.3.3
*/
public static double[] getValueAndDerivative(final int l, final int v, final int w, final double x) {
// compute value and derivative
return getValueAndDerivative(computePolynomial(l, v, w), x);
}
/** Get value and 1st-order of a mono-variate polynomial.
*
* <p> This method was added to improve performances of DSST propagation with tesseral gravity field or third-body perturbations.
* <p> See issue <a href="https://gitlab.orekit.org/orekit/orekit/-/issues/1098">1098</a>.
* @param polynomial polynomial to evaluate
* @param x value to evaluate on
* @return value and 1s-order derivative as a double array
* @since 11.3.3
*/
private static double[] getValueAndDerivative(final PolynomialFunction polynomial, final double x) {
// Polynomial coefficients
final double[] coefficients = polynomial.getCoefficients();
// Degree of the polynomial
final int degree = polynomial.degree();
// Initialize value and 1st-order derivative
double value = coefficients[degree];
double derivative = value * degree;
for (int j = degree - 1; j >= 1; j--) {
// Increment both value and derivative
final double coef = coefficients[j];
value = value * x + coef;
derivative = derivative * x + coef * j;
}
// If degree > 0, perform last operation
if (degree > 0) {
value = value * x + coefficients[0];
}
// Return value and 1st-order derivative as double array
return new double[] {value, derivative};
}
/** Returns the value and derivatives of the Jacobi polynomial P<sub>l</sub><sup>v,w</sup> evaluated at γ.
*
* <p>This method is guaranteed to be thread-safe
* <p>It's not used in the code anymore, see {@link #getValueAndDerivative(int, int, int, double)}, but was kept for validation purpose.
* @param l degree of the polynomial
* @param v v value
* @param w w value
* @param gamma γ value
* @return value and derivatives of the Jacobi polynomial P<sub>l</sub><sup>v,w</sup>(γ)
* @since 10.2
*/
public static Gradient getValue(final int l, final int v, final int w, final Gradient gamma) {
// compute value and derivative
return computePolynomial(l, v, w).value(gamma);
}
/** Returns the value and derivatives of the Jacobi polynomial P<sub>l</sub><sup>v,w</sup> evaluated at γ.
* <p>
* This method is guaranteed to be thread-safe
* </p>
* @param <T> the type of the field elements
* @param l degree of the polynomial
* @param v v value
* @param w w value
* @param gamma γ value
* @return value and derivatives of the Jacobi polynomial P<sub>l</sub><sup>v,w</sup>(γ)
* @since 10.2
*/
public static <T extends CalculusFieldElement<T>> FieldGradient<T> getValue(final int l, final int v, final int w,
final FieldGradient<T> gamma) {
// compute value and derivative
return computePolynomial(l, v, w).value(gamma);
}
/** Initializes the polynomial to evalutate.
* @param l degree of the polynomial
* @param v v value
* @param w w value
* @return the polynomial to evaluate
*/
private static PolynomialFunction computePolynomial(final int l, final int v, final int w) {
final List<PolynomialFunction> polyList;
synchronized (MAP) {
final JacobiKey key = new JacobiKey(v, w);
// Check the existence of the corresponding key in the map.
if (!MAP.containsKey(key)) {
MAP.put(key, new ArrayList<PolynomialFunction>());
}
polyList = MAP.get(key);
}
final PolynomialFunction polynomial;
synchronized (polyList) {
// If the l-th degree polynomial has not been computed yet, the polynomials
// up to this degree are computed.
for (int degree = polyList.size(); degree <= l; degree++) {
polyList.add(degree, PolynomialsUtils.createJacobiPolynomial(degree, v, w));
}
polynomial = polyList.get(l);
}
return polynomial;
}
/** Inner class for Jacobi polynomials keys.
* <p>
* Please note that this class is not original content but is a copy from the
* Hipparchus library. This library is published under the
* Apache License, version 2.0.
* </p>
*
* @see org.hipparchus.analysis.polynomials.PolynomialsUtils
*/
private static class JacobiKey {
/** First exponent. */
private final int v;
/** Second exponent. */
private final int w;
/** Simple constructor.
* @param v first exponent
* @param w second exponent
*/
JacobiKey(final int v, final int w) {
this.v = v;
this.w = w;
}
/** Get hash code.
* @return hash code
*/
@Override
public int hashCode() {
return (v << 16) ^ w;
}
/** Check if the instance represent the same key as another instance.
* @param key other key
* @return true if the instance and the other key refer to the same polynomial
*/
@Override
public boolean equals(final Object key) {
if (!(key instanceof JacobiKey)) {
return false;
}
final JacobiKey otherK = (JacobiKey) key;
return v == otherK.v && w == otherK.w;
}
}
}