CelestialBodyPointed.java

/* Copyright 2002-2023 CS GROUP
 * Licensed to CS GROUP (CS) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * CS licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.orekit.attitudes;

import org.hipparchus.Field;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.geometry.euclidean.threed.FieldRotation;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Rotation;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.orekit.frames.FieldTransform;
import org.orekit.frames.Frame;
import org.orekit.frames.Transform;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.utils.FieldPVCoordinates;
import org.orekit.utils.FieldPVCoordinatesProvider;
import org.orekit.utils.PVCoordinates;
import org.orekit.utils.PVCoordinatesProvider;


/**
 * This class handles a celestial body pointed attitude provider.
 * <p>The celestial body pointed law is defined by two main elements:
 * <ul>
 *   <li>a celestial body towards which some satellite axis is exactly aimed</li>
 *   <li>a phasing reference defining the rotation around the pointing axis</li>
 * </ul>
 *
 * <p>
 * The celestial body implicitly defines two of the three degrees of freedom
 * and the phasing reference defines the remaining degree of freedom. This definition
 * can be represented as first aligning exactly the satellite pointing axis to
 * the current direction of the celestial body, and then to find the rotation
 * around this axis such that the satellite phasing axis is in the half-plane
 * defined by a cut line on the pointing axis and containing the celestial
 * phasing reference.
 * </p>
 * <p>
 * In order for this definition to work, the user must ensure that the phasing
 * reference is <strong>never</strong> aligned with the pointing reference.
 * Since the pointed body moves as the date changes, this should be ensured
 * regardless of the date. A simple way to do this for Sun, Moon or any planet
 * pointing is to choose a phasing reference far from the ecliptic plane. Using
 * <code>Vector3D.PLUS_K</code>, the equatorial pole, is perfect in these cases.
 * </p>
 * <p>Instances of this class are guaranteed to be immutable.</p>
 * @author Luc Maisonobe
 */
public class CelestialBodyPointed implements AttitudeProvider {

    /** Frame in which {@link #phasingCel} is defined. */
    private final Frame celestialFrame;

    /** Celestial body to point at. */
    private final PVCoordinatesProvider pointedBody;

    /** Phasing reference, in celestial frame. */
    private final Vector3D phasingCel;

    /** Satellite axis aiming at the pointed body, in satellite frame. */
    private final Vector3D pointingSat;

    /** Phasing reference, in satellite frame. */
    private final Vector3D phasingSat;

    /** Creates new instance.
     * @param celestialFrame frame in which <code>phasingCel</code> is defined
     * @param pointedBody celestial body to point at
     * @param phasingCel phasing reference, in celestial frame
     * @param pointingSat satellite vector defining the pointing direction
     * @param phasingSat phasing reference, in satellite frame
     */
    public CelestialBodyPointed(final Frame celestialFrame,
                                final PVCoordinatesProvider pointedBody,
                                final Vector3D phasingCel,
                                final Vector3D pointingSat,
                                final Vector3D phasingSat) {
        this.celestialFrame = celestialFrame;
        this.pointedBody    = pointedBody;
        this.phasingCel     = phasingCel;
        this.pointingSat    = pointingSat;
        this.phasingSat     = phasingSat;
    }

    /** {@inheritDoc} */
    public Attitude getAttitude(final PVCoordinatesProvider pvProv,
                                final AbsoluteDate date, final Frame frame) {

        final PVCoordinates satPV = pvProv.getPVCoordinates(date, celestialFrame);

        // compute celestial references at the specified date
        final PVCoordinates bodyPV    = pointedBody.getPVCoordinates(date, celestialFrame);
        final PVCoordinates pointing  = new PVCoordinates(satPV, bodyPV);
        final Vector3D      pointingP = pointing.getPosition();
        final double        r2        = Vector3D.dotProduct(pointingP, pointingP);

        // evaluate instant rotation axis due to sat and body motion only (no phasing yet)
        final Vector3D rotAxisCel =
            new Vector3D(1 / r2, Vector3D.crossProduct(pointingP, pointing.getVelocity()));

        // fix instant rotation to take phasing constraint into account
        // (adding a rotation around pointing axis ensuring the motion of the phasing axis
        //  is constrained in the pointing-phasing plane)
        final Vector3D v1    = Vector3D.crossProduct(rotAxisCel, phasingCel);
        final Vector3D v2    = Vector3D.crossProduct(pointingP,  phasingCel);
        final double   compensation = -Vector3D.dotProduct(v1, v2) / v2.getNormSq();
        final Vector3D phasedRotAxisCel = new Vector3D(1.0, rotAxisCel, compensation, pointingP);

        // compute transform from celestial frame to satellite frame
        final Rotation celToSatRotation =
            new Rotation(pointingP, phasingCel, pointingSat, phasingSat);

        // build transform combining rotation and instant rotation axis
        Transform transform = new Transform(date, celToSatRotation, celToSatRotation.applyTo(phasedRotAxisCel));
        if (frame != celestialFrame) {
            // prepend transform from specified frame to celestial frame
            transform = new Transform(date, frame.getTransformTo(celestialFrame, date), transform);
        }

        // build the attitude
        return new Attitude(date, frame, transform.getRotation(), transform.getRotationRate(), transform.getRotationAcceleration());

    }

    /** {@inheritDoc} */
    public <T extends CalculusFieldElement<T>> FieldAttitude<T> getAttitude(final FieldPVCoordinatesProvider<T> pvProv,
                                                                        final FieldAbsoluteDate<T> date,
                                                                        final Frame frame) {

        final Field<T> field = date.getField();
        final FieldPVCoordinates<T> satPV = pvProv.getPVCoordinates(date, celestialFrame);

        // compute celestial references at the specified date
        final FieldPVCoordinates<T> bodyPV    = new FieldPVCoordinates<>(field,
                                                                         pointedBody.getPVCoordinates(date.toAbsoluteDate(),
                                                                                                      celestialFrame));
        final FieldPVCoordinates<T> pointing  = new FieldPVCoordinates<>(satPV, bodyPV);
        final FieldVector3D<T>      pointingP = pointing.getPosition();
        final T                     r2        = FieldVector3D.dotProduct(pointingP, pointingP);

        // evaluate instant rotation axis due to sat and body motion only (no phasing yet)
        final FieldVector3D<T> rotAxisCel =
            new FieldVector3D<>(r2.reciprocal(), FieldVector3D.crossProduct(pointingP, pointing.getVelocity()));

        // fix instant rotation to take phasing constraint into account
        // (adding a rotation around pointing axis ensuring the motion of the phasing axis
        //  is constrained in the pointing-phasing plane)
        final FieldVector3D<T> v1           = FieldVector3D.crossProduct(rotAxisCel, phasingCel);
        final FieldVector3D<T> v2           = FieldVector3D.crossProduct(pointingP,  phasingCel);
        final T                compensation = FieldVector3D.dotProduct(v1, v2).negate().divide(v2.getNormSq());
        final FieldVector3D<T> phasedRotAxisCel = new FieldVector3D<>(field.getOne(), rotAxisCel, compensation, pointingP);

        // compute transform from celestial frame to satellite frame
        final FieldRotation<T> celToSatRotation =
            new FieldRotation<>(pointingP, new FieldVector3D<>(field, phasingCel),
                            new FieldVector3D<>(field, pointingSat), new FieldVector3D<>(field, phasingSat));

        // build transform combining rotation and instant rotation axis
        FieldTransform<T> transform = new FieldTransform<>(date, celToSatRotation, celToSatRotation.applyTo(phasedRotAxisCel));
        if (frame != celestialFrame) {
            // prepend transform from specified frame to celestial frame
            transform = new FieldTransform<>(date, frame.getTransformTo(celestialFrame, date), transform);
        }

        // build the attitude
        return new FieldAttitude<>(date, frame,
                        transform.getRotation(), transform.getRotationRate(), transform.getRotationAcceleration());

    }

}