AbstractRelativisticJ2ClockModifier.java
/* Copyright 2002-2023 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.estimation.measurements.modifiers;
import org.hipparchus.util.FastMath;
import org.orekit.estimation.measurements.EstimatedMeasurementBase;
import org.orekit.frames.Frame;
import org.orekit.orbits.KeplerianOrbit;
import org.orekit.propagation.SpacecraftState;
import org.orekit.utils.Constants;
import org.orekit.utils.TimeStampedPVCoordinates;
/**
* Class modifying theoretical measurements with relativistic J2 clock correction.
* <p>
* Relativistic clock correction of the effects caused by the oblateness of Earth on
* the gravity potential.
* </p>
* <p>
* The time delay caused by this effect is computed based on the orbital parameters of the
* emitter's orbit.
* </p>
*
* @author Louis Aucouturier
* @since 11.2
*
* @see "Teunissen, Peter, and Oliver Montenbruck, eds. Springer handbook of global navigation
* satellite systems. Chapter 19.2. Equation 19.18 Springer, 2017."
*/
public class AbstractRelativisticJ2ClockModifier {
/**
* Relativistic J2 effect constant.
*/
private final double cJ2;
/** Central attraction coefficient. */
private final double gm;
/**
* Constructor for the Relativistic J2 Clock modifier.
* @param gm Earth gravitational constant (mu) in m³/s².
* @param c20 Earth un-normalized second zonal coefficient (Signed J2 constant, is negative) (Typical value -1.0826e-3).
* @param equatorialRadius Earth equatorial radius in m.
*/
public AbstractRelativisticJ2ClockModifier(final double gm,
final double c20,
final double equatorialRadius) {
this.cJ2 = 1.5 * c20 * equatorialRadius * equatorialRadius /
(Constants.SPEED_OF_LIGHT * Constants.SPEED_OF_LIGHT);
this.gm = gm;
}
/**
* Computes the relativistic J2 clock time delay correction.
*
* @param estimated EstimatedMeasurements on which to calculate the correction
* @return dt_relJ2clk Time delay due to the relativistic J2 clock effect in seconds
*/
protected double relativisticJ2Correction(final EstimatedMeasurementBase<?> estimated) {
// Extracting the state of the receiver to determine the frame and mu
/**
* The satellite states are stored at the creation of the estimated measurements
* and can contain up to 2 elements. In most cases, only the receiver's state and
* therefore frame is stored, with the emitter's frame corresponding to the receiver's.
* Still, in the InterSatellites case, the states of the 2 spacecrafts are stored,
* and can contain different frames. This case is treated by looking at the length
* of SpacecraftState stored in the Estimated Measurements, with the only length 2
* case is the InterSatellites case.
*/
final SpacecraftState[] states = estimated.getStates();
final SpacecraftState state = (states.length < 2) ? states[0] : states[1];
final Frame remoteFrame = state.getFrame();
// Getting Participants to extract the remote PV
final TimeStampedPVCoordinates[] pvs = estimated.getParticipants();
// Checking if the correction is applied on a two-way GNSS problem
// In that case the emitter is at index 1, else index 0
final TimeStampedPVCoordinates pvRemote = (pvs.length < 3) ? pvs[0] : pvs[1];
// Define a Keplerian orbit to extract the orbital parameters needed to compute the correction
final KeplerianOrbit remoteOrbit = new KeplerianOrbit(pvRemote, remoteFrame, gm);
final double orbitInclination = remoteOrbit.getI();
// u = perigee argument + true anomaly
final double orbitU = remoteOrbit.getTrueAnomaly() + remoteOrbit.getPerigeeArgument();
final double n = remoteOrbit.getKeplerianMeanMotion();
// Returning the value of the time delay
return cJ2 * n * FastMath.sin(2 * orbitU) * FastMath.sin(orbitInclination) * FastMath.sin(orbitInclination);
}
}