AngularAzEl.java
- /* Copyright 2002-2023 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.estimation.measurements;
- import java.util.Arrays;
- import org.hipparchus.analysis.differentiation.Gradient;
- import org.hipparchus.analysis.differentiation.GradientField;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- import org.orekit.frames.Frame;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.TimeSpanMap.Span;
- import org.orekit.utils.TimeStampedFieldPVCoordinates;
- import org.orekit.utils.TimeStampedPVCoordinates;
- /** Class modeling an Azimuth-Elevation measurement from a ground station.
- * The motion of the spacecraft during the signal flight time is taken into
- * account. The date of the measurement corresponds to the reception on
- * ground of the reflected signal.
- *
- * @author Thierry Ceolin
- * @since 8.0
- */
- public class AngularAzEl extends GroundReceiverMeasurement<AngularAzEl> {
- /** Type of the measurement. */
- public static final String MEASUREMENT_TYPE = "AngularAzEl";
- /** Simple constructor.
- * @param station ground station from which measurement is performed
- * @param date date of the measurement
- * @param angular observed value
- * @param sigma theoretical standard deviation
- * @param baseWeight base weight
- * @param satellite satellite related to this measurement
- * @since 9.3
- */
- public AngularAzEl(final GroundStation station, final AbsoluteDate date,
- final double[] angular, final double[] sigma, final double[] baseWeight,
- final ObservableSatellite satellite) {
- super(station, false, date, angular, sigma, baseWeight, satellite);
- }
- /** {@inheritDoc} */
- @Override
- protected EstimatedMeasurementBase<AngularAzEl> theoreticalEvaluationWithoutDerivatives(final int iteration,
- final int evaluation,
- final SpacecraftState[] states) {
- final GroundReceiverCommonParametersWithoutDerivatives common = computeCommonParametersWithout(states[0]);
- final TimeStampedPVCoordinates transitPV = common.getTransitPV();
- // Station topocentric frame (east-north-zenith) in inertial frame expressed as Gradient
- final Vector3D east = common.getOffsetToInertialDownlink().transformVector(Vector3D.PLUS_I);
- final Vector3D north = common.getOffsetToInertialDownlink().transformVector(Vector3D.PLUS_J);
- final Vector3D zenith = common.getOffsetToInertialDownlink().transformVector(Vector3D.PLUS_K);
- // Station-satellite vector expressed in inertial frame
- final Vector3D staSat = transitPV.getPosition().subtract(common.getStationDownlink().getPosition());
- // Compute azimuth/elevation
- final double baseAzimuth = FastMath.atan2(staSat.dotProduct(east), staSat.dotProduct(north));
- final double twoPiWrap = MathUtils.normalizeAngle(baseAzimuth, getObservedValue()[0]) - baseAzimuth;
- final double azimuth = baseAzimuth + twoPiWrap;
- final double elevation = FastMath.asin(staSat.dotProduct(zenith) / staSat.getNorm());
- // Prepare the estimation
- final EstimatedMeasurementBase<AngularAzEl> estimated =
- new EstimatedMeasurementBase<>(this, iteration, evaluation,
- new SpacecraftState[] {
- common.getTransitState()
- }, new TimeStampedPVCoordinates[] {
- transitPV,
- common.getStationDownlink()
- });
- // azimuth - elevation values
- estimated.setEstimatedValue(azimuth, elevation);
- return estimated;
- }
- /** {@inheritDoc} */
- @Override
- protected EstimatedMeasurement<AngularAzEl> theoreticalEvaluation(final int iteration, final int evaluation,
- final SpacecraftState[] states) {
- final SpacecraftState state = states[0];
- // Azimuth/elevation derivatives are computed with respect to spacecraft state in inertial frame
- // and station parameters
- // ----------------------
- //
- // Parameters:
- // - 0..2 - Position of the spacecraft in inertial frame
- // - 3..5 - Velocity of the spacecraft in inertial frame
- // - 6..n - station parameters (clock offset, station offsets, pole, prime meridian...)
- final GroundReceiverCommonParametersWithDerivatives common = computeCommonParametersWithDerivatives(state);
- final TimeStampedFieldPVCoordinates<Gradient> transitPV = common.getTransitPV();
- // Station topocentric frame (east-north-zenith) in inertial frame expressed as Gradient
- final GradientField field = common.getTauD().getField();
- final FieldVector3D<Gradient> east = common.getOffsetToInertialDownlink().transformVector(FieldVector3D.getPlusI(field));
- final FieldVector3D<Gradient> north = common.getOffsetToInertialDownlink().transformVector(FieldVector3D.getPlusJ(field));
- final FieldVector3D<Gradient> zenith = common.getOffsetToInertialDownlink().transformVector(FieldVector3D.getPlusK(field));
- // Station-satellite vector expressed in inertial frame
- final FieldVector3D<Gradient> staSat = transitPV.getPosition().subtract(common.getStationDownlink().getPosition());
- // Compute azimuth/elevation
- final Gradient baseAzimuth = staSat.dotProduct(east).atan2(staSat.dotProduct(north));
- final double twoPiWrap = MathUtils.normalizeAngle(baseAzimuth.getReal(), getObservedValue()[0]) -
- baseAzimuth.getReal();
- final Gradient azimuth = baseAzimuth.add(twoPiWrap);
- final Gradient elevation = staSat.dotProduct(zenith).divide(staSat.getNorm()).asin();
- // Prepare the estimation
- final EstimatedMeasurement<AngularAzEl> estimated =
- new EstimatedMeasurement<>(this, iteration, evaluation,
- new SpacecraftState[] {
- common.getTransitState()
- }, new TimeStampedPVCoordinates[] {
- transitPV.toTimeStampedPVCoordinates(),
- common.getStationDownlink().toTimeStampedPVCoordinates()
- });
- // azimuth - elevation values
- estimated.setEstimatedValue(azimuth.getValue(), elevation.getValue());
- // Partial derivatives of azimuth/elevation with respect to state
- // (beware element at index 0 is the value, not a derivative)
- final double[] azDerivatives = azimuth.getGradient();
- final double[] elDerivatives = elevation.getGradient();
- estimated.setStateDerivatives(0,
- Arrays.copyOfRange(azDerivatives, 0, 6), Arrays.copyOfRange(elDerivatives, 0, 6));
- // Set partial derivatives with respect to parameters
- // (beware element at index 0 is the value, not a derivative)
- for (final ParameterDriver driver : getParametersDrivers()) {
- for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
- final Integer index = common.getIndices().get(span.getData());
- if (index != null) {
- estimated.setParameterDerivatives(driver, span.getStart(), azDerivatives[index], elDerivatives[index]);
- }
- }
- }
- return estimated;
- }
- /** Calculate the Line Of Sight of the given measurement.
- * @param outputFrame output frame of the line of sight vector
- * @return Vector3D the line of Sight of the measurement
- */
- public Vector3D getObservedLineOfSight(final Frame outputFrame) {
- return getStation().getBaseFrame().getStaticTransformTo(outputFrame, getDate())
- .transformVector(new Vector3D(MathUtils.SEMI_PI - getObservedValue()[0], getObservedValue()[1]));
- }
- }