AdditionalParametersKey.java
/* Copyright 2002-2023 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.files.ccsds.ndm.cdm;
import org.orekit.files.ccsds.definitions.Units;
import org.orekit.files.ccsds.utils.ContextBinding;
import org.orekit.files.ccsds.utils.lexical.ParseToken;
import org.orekit.files.ccsds.utils.lexical.TokenType;
import org.orekit.utils.units.Unit;
/** Keys for {@link AdditionalParameters CDM additional parameters} entries.
* @author Melina Vanel
* @since 11.2
*/
public enum AdditionalParametersKey {
/** Comment entry. */
COMMENT((token, context, container) ->
token.getType() == TokenType.ENTRY ? container.addComment(token.getContentAsNormalizedString()) : true),
/** The actual area of the object. */
AREA_PC((token, context, container) -> token.processAsDouble(Units.M2, context.getParsedUnitsBehavior(),
container::setAreaPC)),
/** Minimum area (or cross-section) of the object to be used in the calculation of the probability of collision. */
AREA_PC_MIN((token, context, container) -> token.processAsDouble(Units.M2, context.getParsedUnitsBehavior(),
container::setAreaPCMin)),
/** Maximum area (or cross-section) of the object to be used in the calculation of the probability of collision. */
AREA_PC_MAX((token, context, container) -> token.processAsDouble(Units.M2, context.getParsedUnitsBehavior(),
container::setAreaPCMax)),
/** The effective area of the object exposed to atmospheric drag. */
AREA_DRG((token, context, container) -> token.processAsDouble(Units.M2, context.getParsedUnitsBehavior(),
container::setAreaDRG)),
/** The effective area of the object exposed to solar radiation pressure. */
AREA_SRP((token, context, container) -> token.processAsDouble(Units.M2, context.getParsedUnitsBehavior(),
container::setAreaSRP)),
/** Optimally Enclosing Box parent reference frame. */
OEB_PARENT_FRAME((token, context, container) -> token.processAsFrame(container::setOebParentFrame, context, true, true, false)),
/** Optimally Enclosing Box parent reference frame epoch. */
OEB_PARENT_FRAME_EPOCH((token, context, container) -> token.processAsDate(container::setOebParentFrameEpoch, context)),
/** Quaternion defining Optimally Enclosing Box (first vectorial component). */
OEB_Q1((token, context, container) -> token.processAsIndexedDouble(1, Unit.ONE, context.getParsedUnitsBehavior(),
container::setOebQ)),
/** Quaternion defining Optimally Enclosing Box (second vectorial component). */
OEB_Q2((token, context, container) -> token.processAsIndexedDouble(2, Unit.ONE, context.getParsedUnitsBehavior(),
container::setOebQ)),
/** Quaternion defining Optimally Enclosing Box (third vectorial component). */
OEB_Q3((token, context, container) -> token.processAsIndexedDouble(3, Unit.ONE, context.getParsedUnitsBehavior(),
container::setOebQ)),
/** Quaternion defining Optimally Enclosing Box (scalar component). */
OEB_QC((token, context, container) -> token.processAsIndexedDouble(0, Unit.ONE, context.getParsedUnitsBehavior(),
container::setOebQ)),
/** Maximum physical dimension of Optimally Enclosing Box. */
OEB_MAX((token, context, container) -> token.processAsDouble(Unit.METRE, context.getParsedUnitsBehavior(),
container::setOebMax)),
/** Intermediate physical dimension of Optimally Enclosing Box. */
OEB_INT((token, context, container) -> token.processAsDouble(Unit.METRE, context.getParsedUnitsBehavior(),
container::setOebIntermediate)),
/** Minium physical dimension of Optimally Enclosing Box. */
OEB_MIN((token, context, container) -> token.processAsDouble(Unit.METRE, context.getParsedUnitsBehavior(),
container::setOebMin)),
/** Cross-sectional area of Optimally Enclosing Box when viewed along the maximum OEB direction. */
AREA_ALONG_OEB_MAX((token, context, container) -> token.processAsDouble(Units.M2, context.getParsedUnitsBehavior(),
container::setOebAreaAlongMax)),
/** Cross-sectional area of Optimally Enclosing Box when viewed along the intermediate OEB direction. */
AREA_ALONG_OEB_INT((token, context, container) -> token.processAsDouble(Units.M2, context.getParsedUnitsBehavior(),
container::setOebAreaAlongIntermediate)),
/** Cross-sectional area of Optimally Enclosing Box when viewed along the minimum OEB direction. */
AREA_ALONG_OEB_MIN((token, context, container) -> token.processAsDouble(Units.M2, context.getParsedUnitsBehavior(),
container::setOebAreaAlongMin)),
/** Typical (50th percentile) radar cross-section. */
RCS((token, context, container) -> token.processAsDouble(Units.M2, context.getParsedUnitsBehavior(),
container::setRcs)),
/** Minimum radar cross-section. */
RCS_MIN((token, context, container) -> token.processAsDouble(Units.M2, context.getParsedUnitsBehavior(),
container::setMinRcs)),
/** Maximum radar cross-section. */
RCS_MAX((token, context, container) -> token.processAsDouble(Units.M2, context.getParsedUnitsBehavior(),
container::setMaxRcs)),
/** Typical (50th percentile) absolute visual magnitude. */
VM_ABSOLUTE((token, context, container) -> token.processAsDouble(Unit.ONE, context.getParsedUnitsBehavior(),
container::setVmAbsolute)),
/** Minimum apparent visual magnitude. */
VM_APPARENT_MIN((token, context, container) -> token.processAsDouble(Unit.ONE, context.getParsedUnitsBehavior(),
container::setVmApparentMin)),
/** Typical (50th percentile) apparent visual magnitude. */
VM_APPARENT((token, context, container) -> token.processAsDouble(Unit.ONE, context.getParsedUnitsBehavior(),
container::setVmApparent)),
/** Maximum apparent visual magnitude. */
VM_APPARENT_MAX((token, context, container) -> token.processAsDouble(Unit.ONE, context.getParsedUnitsBehavior(),
container::setVmApparentMax)),
/** Typical (50th percentile) coefficient of reflectance. */
REFLECTANCE((token, context, container) -> token.processAsDouble(Unit.ONE, context.getParsedUnitsBehavior(),
container::setReflectance)),
/** The mass of the object. */
MASS((token, context, container) -> token.processAsDouble(Unit.KILOGRAM, context.getParsedUnitsBehavior(),
container::setMass)),
/** Object hard body radius. */
HBR((token, context, container) -> token.processAsDouble(Unit.METRE, context.getParsedUnitsBehavior(),
container::setHbr)),
/** The object’s Cd x A/m used to propagate the state vector and covariance to TCA. */
CD_AREA_OVER_MASS((token, context, container) -> token.processAsDouble(Units.M2_PER_KG, context.getParsedUnitsBehavior(),
container::setCDAreaOverMass)),
/** The object’s Cr x A/m used to propagate the state vector and covariance to TCA. */
CR_AREA_OVER_MASS((token, context, container) -> token.processAsDouble(Units.M2_PER_KG, context.getParsedUnitsBehavior(),
container::setCRAreaOverMass)),
/** The object’s acceleration due to in-track thrust used to propagate the state vector and covariance to TCA. */
THRUST_ACCELERATION((token, context, container) -> token.processAsDouble(Units.M_PER_S2, context.getParsedUnitsBehavior(),
container::setThrustAcceleration)),
/** The amount of energy being removed from the object’s orbit by atmospheric drag. This value is an average calculated during the OD. */
SEDR((token, context, container) -> token.processAsDouble(Units.W_PER_KG, context.getParsedUnitsBehavior(),
container::setSedr)),
/** The distance of the furthest point in the objects orbit above the equatorial radius of the central body. */
APOAPSIS_ALTITUDE((token, context, container) -> token.processAsDouble(Unit.KILOMETRE, context.getParsedUnitsBehavior(),
container::setApoapsisAltitude)),
/** The distance of the closest point in the objects orbit above the equatorial radius of the central body. */
PERIAPSIS_ALTITUDE((token, context, container) -> token.processAsDouble(Unit.KILOMETRE, context.getParsedUnitsBehavior(),
container::setPeriapsisAltitude)),
/** The angle between the objects orbit plane and the orbit centers equatorial plane. */
INCLINATION((token, context, container) -> token.processAsDouble(Unit.DEGREE, context.getParsedUnitsBehavior(),
container::setInclination)),
/** A measure of the confidence in the covariance errors matching reality. */
COV_CONFIDENCE((token, context, container) -> token.processAsDouble(Unit.NONE, context.getParsedUnitsBehavior(),
container::setCovConfidence)),
/** The method used for the calculation of COV_CONFIDENCE. */
COV_CONFIDENCE_METHOD((token, context, container) -> token.processAsFreeTextString(container::setCovConfidenceMethod));
/** Processing method. */
private final TokenProcessor processor;
/** Simple constructor.
* @param processor processing method
*/
AdditionalParametersKey(final TokenProcessor processor) {
this.processor = processor;
}
/** Process one token.
* @param token token to process
* @param context context binding
* @param container container to fill
* @return true of token was accepted
*/
public boolean process(final ParseToken token, final ContextBinding context, final AdditionalParameters container) {
return processor.process(token, context, container);
}
/** Interface for processing one token. */
interface TokenProcessor {
/** Process one token.
* @param token token to process
* @param context context binding
* @param container container to fill
* @return true of token was accepted
*/
boolean process(ParseToken token, ContextBinding context, AdditionalParameters container);
}
}