OrbitElementsType.java
/* Copyright 2002-2023 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.files.ccsds.ndm.odm.ocm;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.Stream;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathUtils;
import org.hipparchus.util.SinCos;
import org.orekit.annotation.DefaultDataContext;
import org.orekit.bodies.GeodeticPoint;
import org.orekit.bodies.OneAxisEllipsoid;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitMessages;
import org.orekit.frames.Frame;
import org.orekit.frames.FramesFactory;
import org.orekit.orbits.EquinoctialOrbit;
import org.orekit.orbits.KeplerianOrbit;
import org.orekit.orbits.PositionAngleType;
import org.orekit.time.AbsoluteDate;
import org.orekit.utils.TimeStampedPVCoordinates;
import org.orekit.utils.units.Unit;
/** Orbit element set type used in CCSDS {@link Ocm Orbit Comprehensive Messages}.
* @see <a href="https://sanaregistry.org/r/orbital_elements">SANA registry for orbital elements</a>
* @author Luc Maisonobe
* @since 11.0
*/
public enum OrbitElementsType {
// CHECKSTYLE: stop MultipleStringLiterals check
/** Spherical 6-element set (α,δ,β,A,r,v). */
ADBARV("Spherical 6-element set (α,δ,β,A,r,v)",
"°", "°", "°", "°", "km", "km/s"),
/** Cartesian 3-element position (X, Y, Z). */
CARTP("Cartesian 3-element position (X, Y, Z)",
"km", "km", "km") {
/** {@inheritDoc} */
@Override
public TimeStampedPVCoordinates toCartesian(final AbsoluteDate date, final double[] elements,
final OneAxisEllipsoid body, final double mu) {
return new TimeStampedPVCoordinates(date,
new Vector3D(elements[0], elements[1], elements[2]),
Vector3D.ZERO,
Vector3D.ZERO);
}
/** {@inheritDoc} */
@Override
public double[] toRawElements(final TimeStampedPVCoordinates pv, final Frame frame,
final OneAxisEllipsoid body, final double mu) {
return new double[] {
pv.getPosition().getX(), pv.getPosition().getY(), pv.getPosition().getZ()
};
}
},
/** Cartesian 6-element position and velocity (X, Y, Z, XD, YD, ZD). */
CARTPV("Cartesian 6-element position and velocity (X, Y, Z, XD, YD, ZD)",
"km", "km", "km", "km/s", "km/s", "km/s") {
/** {@inheritDoc} */
@Override
public TimeStampedPVCoordinates toCartesian(final AbsoluteDate date, final double[] elements,
final OneAxisEllipsoid body, final double mu) {
return new TimeStampedPVCoordinates(date,
new Vector3D(elements[0], elements[1], elements[2]),
new Vector3D(elements[3], elements[4], elements[5]),
Vector3D.ZERO);
}
/** {@inheritDoc} */
@Override
public double[] toRawElements(final TimeStampedPVCoordinates pv, final Frame frame,
final OneAxisEllipsoid body, final double mu) {
return new double[] {
pv.getPosition().getX(), pv.getPosition().getY(), pv.getPosition().getZ(),
pv.getVelocity().getX(), pv.getVelocity().getY(), pv.getVelocity().getZ()
};
}
},
/** Cartesian 9-element position, velocity and acceleration (X, Y, Z, XD, YD, ZD, XDD, YDD, ZDD). */
CARTPVA("Cartesian 9-element position, velocity and acceleration (X, Y, Z, XD, YD, ZD, XDD, YDD, ZDD)",
"km", "km", "km", "km/s", "km/s", "km/s", "km/s²", "km/s²", "km/s²") {
/** {@inheritDoc} */
@Override
public TimeStampedPVCoordinates toCartesian(final AbsoluteDate date, final double[] elements,
final OneAxisEllipsoid body, final double mu) {
return new TimeStampedPVCoordinates(date,
new Vector3D(elements[0], elements[1], elements[2]),
new Vector3D(elements[3], elements[4], elements[5]),
new Vector3D(elements[6], elements[7], elements[8]));
}
/** {@inheritDoc} */
@Override
public double[] toRawElements(final TimeStampedPVCoordinates pv, final Frame frame,
final OneAxisEllipsoid body, final double mu) {
return new double[] {
pv.getPosition().getX(), pv.getPosition().getY(), pv.getPosition().getZ(),
pv.getVelocity().getX(), pv.getVelocity().getY(), pv.getVelocity().getZ(),
pv.getAcceleration().getX(), pv.getAcceleration().getY(), pv.getAcceleration().getZ()
};
}
},
/** Delaunay elements (L, G, H, l, g, h). */
DELAUNAY("Delaunay elements (L, G, H, l, g, h)",
"km²/s", "km²/s", "km²/s", "°", "°", "°"),
/** Modified Delaunay elements (Lm, Gm, Hm, lm, gm, hm). */
DELAUNAYMOD("Delaunay elements (Lm, Gm, Hm, lm, gm, hm)",
"√km", "√km", "√km", "°", "°", "°"),
/** 12 elements eigenvalue/eigenvectors (EigMaj, EigMed, EigMin, EigVecMaj, EigVecMed, EigVecMin). */
EIGVAL3EIGVEC3("12 elements eigenvalue/eigenvectors (EigMaj, EigMed, EigMin, EigVecMaj, EigVecMed, EigVecMin)",
"km", "km", "km", "n/a", "n/a", "n/a", "n/a", "n/a", "n/a", "n/a", "n/a", "n/a"),
/** Equinoctial elements (a, af, ag, L=M+ω+frΩ, χ, ψ, fr). */
EQUINOCTIAL("Equinoctial elements (a, af, ag, L=M+ω+frΩ, χ, ψ, fr)",
"km", "n/a", "n/a", "°", "n/a", "n/a", "n/a") {
/** {@inheritDoc} */
@Override
@DefaultDataContext
public TimeStampedPVCoordinates toCartesian(final AbsoluteDate date, final double[] elements,
final OneAxisEllipsoid body, final double mu) {
if (elements[6] < 0) {
// retrograde
throw new OrekitException(OrekitMessages.CCSDS_UNSUPPORTED_RETROGRADE_EQUINOCTIAL,
EQUINOCTIAL.name());
}
return new EquinoctialOrbit(elements[0], elements[1], elements[2],
elements[5], elements[4], // BEWARE! the inversion here is intentional
elements[3], PositionAngleType.MEAN,
FramesFactory.getGCRF(), date, mu).
getPVCoordinates();
}
/** {@inheritDoc} */
@Override
public double[] toRawElements(final TimeStampedPVCoordinates pv, final Frame frame,
final OneAxisEllipsoid body, final double mu) {
final EquinoctialOrbit orbit = new EquinoctialOrbit(pv, frame, mu);
return new double[] {
orbit.getA(), orbit.getEquinoctialEx(), orbit.getEquinoctialEy(),
orbit.getLM(), orbit.getHy(), orbit.getHx(), +1
};
}
},
/** Modified equinoctial elements (p=a(1−e²), af, ag, L'=υ+ω+frΩ, χ, ψ, fr). */
EQUINOCTIALMOD("Modified equinoctial elements (p=a(1−e²), af, ag, L'=υ+ω+frΩ, χ, ψ, fr)",
"km", "n/a", "n/a", "°", "n/a", "n/a", "n/a") {
/** {@inheritDoc} */
@Override
@DefaultDataContext
public TimeStampedPVCoordinates toCartesian(final AbsoluteDate date, final double[] elements,
final OneAxisEllipsoid body, final double mu) {
if (elements[6] < 0) {
// retrograde
throw new OrekitException(OrekitMessages.CCSDS_UNSUPPORTED_RETROGRADE_EQUINOCTIAL,
EQUINOCTIALMOD.name());
}
final double oMe2 = 1.0 - (elements[1] * elements[1] + elements[2] * elements[2]);
return new EquinoctialOrbit(elements[0] / oMe2, elements[1], elements[2],
elements[5], elements[4], // BEWARE! the inversion here is intentional
elements[3], PositionAngleType.TRUE,
FramesFactory.getGCRF(), date, mu).
getPVCoordinates();
}
/** {@inheritDoc} */
@Override
public double[] toRawElements(final TimeStampedPVCoordinates pv, final Frame frame,
final OneAxisEllipsoid body, final double mu) {
final EquinoctialOrbit orbit = new EquinoctialOrbit(pv, frame, mu);
final double ex = orbit.getEquinoctialEx();
final double ey = orbit.getEquinoctialEy();
return new double[] {
orbit.getA() * (1 - (ex * ex + ey * ey)), ex, ey,
orbit.getLv(), orbit.getHy(), orbit.getHx(), +1
};
}
},
/** Geodetic elements (λ, ΦGD, β, A, h, vre). */
GEODETIC("Geodetic elements (λ, ΦGD, β, A, h, vre)",
"°", "°", "°", "°", "km", "km/s") {
/** {@inheritDoc} */
@Override
@DefaultDataContext
public TimeStampedPVCoordinates toCartesian(final AbsoluteDate date, final double[] elements,
final OneAxisEllipsoid body, final double mu) {
final GeodeticPoint gp = new GeodeticPoint(elements[1], elements[0], elements[4]);
final Vector3D position = body.transform(gp);
final SinCos scBeta = FastMath.sinCos(elements[2]);
final SinCos scAzi = FastMath.sinCos(elements[3]);
final Vector3D velocity = new Vector3D(elements[5] * scBeta.cos() * scAzi.sin(), gp.getEast(),
elements[5] * scBeta.cos() * scAzi.cos(), gp.getNorth(),
elements[5] * scBeta.sin(), gp.getZenith());
return new TimeStampedPVCoordinates(date, position, velocity);
}
/** {@inheritDoc} */
@Override
public double[] toRawElements(final TimeStampedPVCoordinates pv, final Frame frame,
final OneAxisEllipsoid body, final double mu) {
final GeodeticPoint gp = body.transform(pv.getPosition(), frame, pv.getDate());
return new double[] {
gp.getLongitude(), gp.getLatitude(),
MathUtils.SEMI_PI - Vector3D.angle(pv.getVelocity(), gp.getZenith()),
FastMath.atan2(Vector3D.dotProduct(pv.getVelocity(), gp.getEast()),
Vector3D.dotProduct(pv.getVelocity(), gp.getNorth())),
gp.getAltitude(),
pv.getVelocity().getNorm()
};
}
},
/** Keplerian 6-element classical set (a, e, i, Ω, ω, ν). */
KEPLERIAN("Keplerian 6-elemnt classical set (a, e, i, Ω, ω, ν)",
"km", "n/a", "°", "°", "°", "°") {
/** {@inheritDoc} */
@Override
@DefaultDataContext
public TimeStampedPVCoordinates toCartesian(final AbsoluteDate date, final double[] elements,
final OneAxisEllipsoid body, final double mu) {
return new KeplerianOrbit(elements[0], elements[1], elements[2],
elements[4], elements[3], // BEWARE! the inversion here is intentional
elements[5], PositionAngleType.TRUE,
FramesFactory.getGCRF(), date, mu).
getPVCoordinates();
}
/** {@inheritDoc} */
@Override
public double[] toRawElements(final TimeStampedPVCoordinates pv, final Frame frame,
final OneAxisEllipsoid body, final double mu) {
final KeplerianOrbit orbit = new KeplerianOrbit(pv, frame, mu);
return new double[] {
orbit.getA(), orbit.getE(), orbit.getI(),
orbit.getRightAscensionOfAscendingNode(),
orbit.getPerigeeArgument(), orbit.getTrueAnomaly()
};
}
},
/** Keplerian 6-element classical set (a, e, i, Ω, ω, M). */
KEPLERIANMEAN("Keplerian 6-elemnt classical set (a, e, i, Ω, ω, M)",
"km", "n/a", "°", "°", "°", "°") {
/** {@inheritDoc} */
@Override
@DefaultDataContext
public TimeStampedPVCoordinates toCartesian(final AbsoluteDate date, final double[] elements,
final OneAxisEllipsoid body, final double mu) {
return new KeplerianOrbit(elements[0], elements[1], elements[2],
elements[4], elements[3], // BEWARE! the inversion here is intentional
elements[5], PositionAngleType.MEAN,
FramesFactory.getGCRF(), date, mu).
getPVCoordinates();
}
/** {@inheritDoc} */
@Override
public double[] toRawElements(final TimeStampedPVCoordinates pv, final Frame frame,
final OneAxisEllipsoid body, final double mu) {
final KeplerianOrbit orbit = new KeplerianOrbit(pv, frame, mu);
return new double[] {
orbit.getA(), orbit.getE(), orbit.getI(),
orbit.getRightAscensionOfAscendingNode(),
orbit.getPerigeeArgument(), orbit.getMeanAnomaly()
};
}
},
/** Modified spherical 6-element set (λ, δ, β, A, r, v). */
LDBARV("Modified spherical 6-element set (λ, δ, β, A, r, v)",
"°", "°", "°", "°", "km", "km/s"),
/** Geosynchronous on-station tailored set (a, ex, ey, ix, iy, λ). */
ONSTATION("Geosynchronous on-station tailored set (a, ex, ey, ix, iy, λ)",
"km", "n/a", "n/a", "n/a", "n/a", "°"),
/** Canonical counterpart of equinoctial 6-element set (λM=M+ω+Ω, gp, hp, Lp, Gp, Hp). */
POINCARE("Canonical counterpart of equinoctial 6-element set (λM=M+ω+Ω, gp, hp, Lp, Gp, Hp)",
"°", "km/√s", "km/√s", "km²/s", "km/√s", "km/√s");
// CHECKSTYLE: resume MultipleStringLiterals check
/** Description. */
private final String description;
/** Elements units. */
private final List<Unit> units;
/** Simple constructor.
* @param description description
* @param unitsSpecifications elements units specifications
*/
OrbitElementsType(final String description, final String... unitsSpecifications) {
this.description = description;
this.units = Stream.of(unitsSpecifications).
map(s -> Unit.parse(s)).
collect(Collectors.toList());
}
/** Get the elements units.
* @return elements units
*/
public List<Unit> getUnits() {
return units;
}
/** Convert to Cartesian coordinates.
* @param date elements date
* @param elements elements values in SI units
* @param body central body
* (may be null if type is <em>not</em> {@link OrbitElementsType#GEODETIC})
* @param mu gravitational parameter in m³/s²
* @return Cartesian coordinates
*/
public TimeStampedPVCoordinates toCartesian(final AbsoluteDate date, final double[] elements,
final OneAxisEllipsoid body, final double mu) {
throw new OrekitException(OrekitMessages.CCSDS_UNSUPPORTED_ELEMENT_SET_TYPE, name(), toString());
}
/** Convert to raw elements array.
* @param pv Cartesian coordinates
* @param frame inertial frame where elements are defined
* @param body central body
* (may be null if type is <em>not</em> {@link OrbitElementsType#GEODETIC})
* @param mu gravitational parameter in m³/s²
* @return elements elements values in SI units
* @since 12.0
*/
public double[] toRawElements(final TimeStampedPVCoordinates pv, final Frame frame,
final OneAxisEllipsoid body, final double mu) {
throw new OrekitException(OrekitMessages.CCSDS_UNSUPPORTED_ELEMENT_SET_TYPE, name(), toString());
}
/** {@inheritDoc} */
@Override
public String toString() {
return description;
}
}