SolarRadiationPressure.java
- /* Copyright 2002-2023 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.forces.radiation;
- import java.lang.reflect.Array;
- import java.util.List;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.Precision;
- import org.orekit.bodies.OneAxisEllipsoid;
- import org.orekit.frames.Frame;
- import org.orekit.propagation.FieldSpacecraftState;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.FieldAbsoluteDate;
- import org.orekit.utils.Constants;
- import org.orekit.utils.ExtendedPVCoordinatesProvider;
- import org.orekit.utils.FrameAdapter;
- import org.orekit.utils.OccultationEngine;
- import org.orekit.utils.ParameterDriver;
- /** Solar radiation pressure force model.
- * <p>
- * Since Orekit 11.0, it is possible to take into account
- * the eclipses generated by Moon in the solar radiation
- * pressure force model using the
- * {@link #addOccultingBody(ExtendedPVCoordinatesProvider, double)}
- * method.
- * <p>
- * Example:<br>
- * <code> SolarRadiationPressure srp = </code>
- * <code> new SolarRadiationPressure(CelestialBodyFactory.getSun(), Constants.EIGEN5C_EARTH_EQUATORIAL_RADIUS,</code>
- * <code> new IsotropicRadiationClassicalConvention(50.0, 0.5, 0.5));</code><br>
- * <code> srp.addOccultingBody(CelestialBodyFactory.getMoon(), Constants.MOON_EQUATORIAL_RADIUS);</code><br>
- *
- * @author Fabien Maussion
- * @author Édouard Delente
- * @author Véronique Pommier-Maurussane
- * @author Pascal Parraud
- */
- public class SolarRadiationPressure extends AbstractRadiationForceModel {
- /** Reference distance for the solar radiation pressure (m). */
- private static final double D_REF = 149597870000.0;
- /** Reference solar radiation pressure at D_REF (N/m²). */
- private static final double P_REF = 4.56e-6;
- /** Margin to force recompute lighting ratio derivatives when we are really inside penumbra. */
- private static final double ANGULAR_MARGIN = 1.0e-10;
- /** Threshold to decide whether the S/C frame is Sun-centered. */
- private static final double SUN_CENTERED_FRAME_THRESHOLD = 2. * Constants.SUN_RADIUS;
- /** Reference flux normalized for a 1m distance (N). */
- private final double kRef;
- /** Sun model. */
- private final ExtendedPVCoordinatesProvider sun;
- /** Spacecraft. */
- private final RadiationSensitive spacecraft;
- /** Simple constructor with default reference values.
- * <p>When this constructor is used, the reference values are:</p>
- * <ul>
- * <li>d<sub>ref</sub> = 149597870000.0 m</li>
- * <li>p<sub>ref</sub> = 4.56 10<sup>-6</sup> N/m²</li>
- * </ul>
- * @param sun Sun model
- * @param centralBody central body shape model (for umbra/penumbra computation)
- * @param spacecraft the object physical and geometrical information
- * @since 12.0
- */
- public SolarRadiationPressure(final ExtendedPVCoordinatesProvider sun,
- final OneAxisEllipsoid centralBody,
- final RadiationSensitive spacecraft) {
- this(D_REF, P_REF, sun, centralBody, spacecraft);
- }
- /** Complete constructor.
- * <p>Note that reference solar radiation pressure <code>pRef</code> in
- * N/m² is linked to solar flux SF in W/m² using
- * formula pRef = SF/c where c is the speed of light (299792458 m/s). So
- * at 1UA a 1367 W/m² solar flux is a 4.56 10<sup>-6</sup>
- * N/m² solar radiation pressure.</p>
- * @param dRef reference distance for the solar radiation pressure (m)
- * @param pRef reference solar radiation pressure at dRef (N/m²)
- * @param sun Sun model
- * @param centralBody central body shape model (for umbra/penumbra computation)
- * @param spacecraft the object physical and geometrical information
- * @since 12.0
- */
- public SolarRadiationPressure(final double dRef, final double pRef,
- final ExtendedPVCoordinatesProvider sun,
- final OneAxisEllipsoid centralBody,
- final RadiationSensitive spacecraft) {
- super(sun, centralBody);
- this.kRef = pRef * dRef * dRef;
- this.sun = sun;
- this.spacecraft = spacecraft;
- }
- /** {@inheritDoc} */
- @Override
- public Vector3D acceleration(final SpacecraftState s, final double[] parameters) {
- final AbsoluteDate date = s.getDate();
- final Frame frame = s.getFrame();
- final Vector3D position = s.getPosition();
- final Vector3D sunPosition = sun.getPosition(date, frame);
- final Vector3D sunSatVector = position.subtract(sunPosition);
- final double r2 = sunSatVector.getNormSq();
- // compute flux
- final double ratio = getLightingRatio(s, sunPosition);
- final double rawP = ratio * kRef / r2;
- final Vector3D flux = new Vector3D(rawP / FastMath.sqrt(r2), sunSatVector);
- return spacecraft.radiationPressureAcceleration(s, flux, parameters);
- }
- /** {@inheritDoc} */
- @Override
- public <T extends CalculusFieldElement<T>> FieldVector3D<T> acceleration(final FieldSpacecraftState<T> s,
- final T[] parameters) {
- final FieldAbsoluteDate<T> date = s.getDate();
- final Frame frame = s.getFrame();
- final FieldVector3D<T> position = s.getPosition();
- final FieldVector3D<T> sunPosition = sun.getPosition(date, frame);
- final FieldVector3D<T> sunSatVector = position.subtract(sunPosition);
- final T r2 = sunSatVector.getNormSq();
- // compute flux
- final T ratio = getLightingRatio(s, sunPosition);
- final T rawP = ratio.multiply(kRef).divide(r2);
- final FieldVector3D<T> flux = new FieldVector3D<>(rawP.divide(r2.sqrt()), sunSatVector);
- return spacecraft.radiationPressureAcceleration(s, flux, parameters);
- }
- /** Check whether the frame is considerer Sun-centered.
- *
- * @param sunPositionInFrame Sun position in frame to test
- * @return true if frame is considered Sun-centered
- * @since 12.0
- */
- private boolean isSunCenteredFrame(final Vector3D sunPositionInFrame) {
- // Frame is considered Sun-centered if Sun (or Solar System barycenter) position
- // in that frame is smaller than SUN_CENTERED_FRAME_THRESHOLD
- return sunPositionInFrame.getNorm() < SUN_CENTERED_FRAME_THRESHOLD;
- }
- /** Get the lighting ratio ([0-1]).
- * @param state spacecraft state
- * @param sunPosition Sun position in S/C frame at S/C date
- * @return lighting ratio
- * @since 12.0 added to avoid numerous call to sun.getPosition(...)
- */
- private double getLightingRatio(final SpacecraftState state, final Vector3D sunPosition) {
- // Check if S/C frame is Sun-centered
- if (isSunCenteredFrame(sunPosition)) {
- // We are in fact computing a trajectory around Sun (or solar system barycenter),
- // not around a planet, we consider lighting ratio will always be 1
- return 1.0;
- }
- final List<OccultationEngine> occultingBodies = getOccultingBodies();
- final int n = occultingBodies.size();
- final OccultationEngine.OccultationAngles[] angles = new OccultationEngine.OccultationAngles[n];
- for (int i = 0; i < n; ++i) {
- angles[i] = occultingBodies.get(i).angles(state);
- }
- final double alphaSunSq = angles[0].getOccultedApparentRadius() * angles[0].getOccultedApparentRadius();
- double result = 0.0;
- for (int i = 0; i < n; ++i) {
- // compute lighting ratio considering one occulting body only
- final OccultationEngine oi = occultingBodies.get(i);
- final double lightingRatioI = maskingRatio(angles[i]);
- if (lightingRatioI == 0.0) {
- // body totally occults Sun, total eclipse is occurring.
- return 0.0;
- }
- result += lightingRatioI;
- // Mutual occulting body eclipse ratio computations between first and secondary bodies
- for (int j = i + 1; j < n; ++j) {
- final OccultationEngine oj = occultingBodies.get(j);
- final double lightingRatioJ = maskingRatio(angles[j]);
- if (lightingRatioJ == 0.0) {
- // Secondary body totally occults Sun, no more computations are required, total eclipse is occurring.
- return 0.0;
- } else if (lightingRatioJ != 1) {
- // Secondary body partially occults Sun
- final OccultationEngine oij = new OccultationEngine(new FrameAdapter(oi.getOcculting().getBodyFrame()),
- oi.getOcculting().getEquatorialRadius(),
- oj.getOcculting());
- final OccultationEngine.OccultationAngles aij = oij.angles(state);
- final double maskingRatioIJ = maskingRatio(aij);
- final double alphaJSq = aij.getOccultedApparentRadius() * aij.getOccultedApparentRadius();
- final double mutualEclipseCorrection = (1 - maskingRatioIJ) * alphaJSq / alphaSunSq;
- result -= mutualEclipseCorrection;
- }
- }
- }
- // Final term
- result -= n - 1;
- return result;
- }
- /** Get the lighting ratio ([0-1]).
- * @param state spacecraft state
- * @return lighting ratio
- * @since 7.1
- */
- public double getLightingRatio(final SpacecraftState state) {
- return getLightingRatio(state, sun.getPosition(state.getDate(), state.getFrame()));
- }
- /** Get the masking ratio ([0-1]) considering one pair of bodies.
- * @param angles occultation angles
- * @return masking ratio: 0.0 body fully masked, 1.0 body fully visible
- * @since 12.0
- */
- private double maskingRatio(final OccultationEngine.OccultationAngles angles) {
- // Sat-Occulted/ Sat-Occulting angle
- final double sunSatCentralBodyAngle = angles.getSeparation();
- // Occulting apparent radius
- final double alphaCentral = angles.getLimbRadius();
- // Occulted apparent radius
- final double alphaSun = angles.getOccultedApparentRadius();
- // Is the satellite in complete umbra ?
- if (sunSatCentralBodyAngle - alphaCentral + alphaSun <= ANGULAR_MARGIN) {
- return 0.0;
- } else if (sunSatCentralBodyAngle - alphaCentral - alphaSun < -ANGULAR_MARGIN) {
- // Compute a masking ratio in penumbra
- final double sEA2 = sunSatCentralBodyAngle * sunSatCentralBodyAngle;
- final double oo2sEA = 1.0 / (2. * sunSatCentralBodyAngle);
- final double aS2 = alphaSun * alphaSun;
- final double aE2 = alphaCentral * alphaCentral;
- final double aE2maS2 = aE2 - aS2;
- final double alpha1 = (sEA2 - aE2maS2) * oo2sEA;
- final double alpha2 = (sEA2 + aE2maS2) * oo2sEA;
- // Protection against numerical inaccuracy at boundaries
- final double almost0 = Precision.SAFE_MIN;
- final double almost1 = FastMath.nextDown(1.0);
- final double a1oaS = FastMath.min(almost1, FastMath.max(-almost1, alpha1 / alphaSun));
- final double aS2ma12 = FastMath.max(almost0, aS2 - alpha1 * alpha1);
- final double a2oaE = FastMath.min(almost1, FastMath.max(-almost1, alpha2 / alphaCentral));
- final double aE2ma22 = FastMath.max(almost0, aE2 - alpha2 * alpha2);
- final double P1 = aS2 * FastMath.acos(a1oaS) - alpha1 * FastMath.sqrt(aS2ma12);
- final double P2 = aE2 * FastMath.acos(a2oaE) - alpha2 * FastMath.sqrt(aE2ma22);
- return 1. - (P1 + P2) / (FastMath.PI * aS2);
- } else {
- return 1.0;
- }
- }
- /** Get the lighting ratio ([0-1]).
- * @param state spacecraft state
- * @param sunPosition Sun position in S/C frame at S/C date
- * @param <T> extends CalculusFieldElement
- * @return lighting ratio
- * @since 12.0 added to avoid numerous call to sun.getPosition(...)
- */
- private <T extends CalculusFieldElement<T>> T getLightingRatio(final FieldSpacecraftState<T> state, final FieldVector3D<T> sunPosition) {
- final T one = state.getDate().getField().getOne();
- if (isSunCenteredFrame(sunPosition.toVector3D())) {
- // We are in fact computing a trajectory around Sun (or solar system barycenter),
- // not around a planet, we consider lighting ratio will always be 1
- return one;
- }
- final T zero = state.getDate().getField().getZero();
- final List<OccultationEngine> occultingBodies = getOccultingBodies();
- final int n = occultingBodies.size();
- @SuppressWarnings("unchecked")
- final OccultationEngine.FieldOccultationAngles<T>[] angles =
- (OccultationEngine.FieldOccultationAngles<T>[]) Array.newInstance(OccultationEngine.FieldOccultationAngles.class, n);
- for (int i = 0; i < n; ++i) {
- angles[i] = occultingBodies.get(i).angles(state);
- }
- final T alphaSunSq = angles[0].getOccultedApparentRadius().multiply(angles[0].getOccultedApparentRadius());
- T result = state.getDate().getField().getZero();
- for (int i = 0; i < n; ++i) {
- // compute lighting ratio considering one occulting body only
- final OccultationEngine oi = occultingBodies.get(i);
- final T lightingRatioI = maskingRatio(angles[i]);
- if (lightingRatioI.isZero()) {
- // body totally occults Sun, total eclipse is occurring.
- return zero;
- }
- result = result.add(lightingRatioI);
- // Mutual occulting body eclipse ratio computations between first and secondary bodies
- for (int j = i + 1; j < n; ++j) {
- final OccultationEngine oj = occultingBodies.get(j);
- final T lightingRatioJ = maskingRatio(angles[j]);
- if (lightingRatioJ.isZero()) {
- // Secondary body totally occults Sun, no more computations are required, total eclipse is occurring.
- return zero;
- } else if (lightingRatioJ.getReal() != 1) {
- // Secondary body partially occults Sun
- final OccultationEngine oij = new OccultationEngine(new FrameAdapter(oi.getOcculting().getBodyFrame()),
- oi.getOcculting().getEquatorialRadius(),
- oj.getOcculting());
- final OccultationEngine.FieldOccultationAngles<T> aij = oij.angles(state);
- final T maskingRatioIJ = maskingRatio(aij);
- final T alphaJSq = aij.getOccultedApparentRadius().multiply(aij.getOccultedApparentRadius());
- final T mutualEclipseCorrection = one.subtract(maskingRatioIJ).multiply(alphaJSq).divide(alphaSunSq);
- result = result.subtract(mutualEclipseCorrection);
- }
- }
- }
- // Final term
- result = result.subtract(n - 1);
- return result;
- }
- /** Get the lighting ratio ([0-1]).
- * @param state spacecraft state
- * @param <T> extends CalculusFieldElement
- * @return lighting ratio
- * @since 7.1
- */
- public <T extends CalculusFieldElement<T>> T getLightingRatio(final FieldSpacecraftState<T> state) {
- return getLightingRatio(state, sun.getPosition(state.getDate(), state.getFrame()));
- }
- /** Get the masking ratio ([0-1]) considering one pair of bodies.
- * @param angles occultation angles
- * @param <T> type of the field elements
- * @return masking ratio: 0.0 body fully masked, 1.0 body fully visible
- * @since 12.0
- */
- private <T extends CalculusFieldElement<T>> T maskingRatio(final OccultationEngine.FieldOccultationAngles<T> angles) {
- // Sat-Occulted/ Sat-Occulting angle
- final T occultedSatOcculting = angles.getSeparation();
- // Occulting apparent radius
- final T alphaOcculting = angles.getLimbRadius();
- // Occulted apparent radius
- final T alphaOcculted = angles.getOccultedApparentRadius();
- // Is the satellite in complete umbra ?
- if (occultedSatOcculting.getReal() - alphaOcculting.getReal() + alphaOcculted.getReal() <= ANGULAR_MARGIN) {
- return occultedSatOcculting.getField().getZero();
- } else if (occultedSatOcculting.getReal() - alphaOcculting.getReal() - alphaOcculted.getReal() < -ANGULAR_MARGIN) {
- // Compute a masking ratio in penumbra
- final T sEA2 = occultedSatOcculting.multiply(occultedSatOcculting);
- final T oo2sEA = occultedSatOcculting.multiply(2).reciprocal();
- final T aS2 = alphaOcculted.multiply(alphaOcculted);
- final T aE2 = alphaOcculting.multiply(alphaOcculting);
- final T aE2maS2 = aE2.subtract(aS2);
- final T alpha1 = sEA2.subtract(aE2maS2).multiply(oo2sEA);
- final T alpha2 = sEA2.add(aE2maS2).multiply(oo2sEA);
- // Protection against numerical inaccuracy at boundaries
- final double almost0 = Precision.SAFE_MIN;
- final double almost1 = FastMath.nextDown(1.0);
- final T a1oaS = min(almost1, max(-almost1, alpha1.divide(alphaOcculted)));
- final T aS2ma12 = max(almost0, aS2.subtract(alpha1.multiply(alpha1)));
- final T a2oaE = min(almost1, max(-almost1, alpha2.divide(alphaOcculting)));
- final T aE2ma22 = max(almost0, aE2.subtract(alpha2.multiply(alpha2)));
- final T P1 = aS2.multiply(a1oaS.acos()).subtract(alpha1.multiply(aS2ma12.sqrt()));
- final T P2 = aE2.multiply(a2oaE.acos()).subtract(alpha2.multiply(aE2ma22.sqrt()));
- return occultedSatOcculting.getField().getOne().subtract(P1.add(P2).divide(aS2.multiply(occultedSatOcculting.getPi())));
- } else {
- return occultedSatOcculting.getField().getOne();
- }
- }
- /** {@inheritDoc} */
- @Override
- public List<ParameterDriver> getParametersDrivers() {
- return spacecraft.getRadiationParametersDrivers();
- }
- /** Compute min of two values, one double and one field element.
- * @param d double value
- * @param f field element
- * @param <T> type of the field elements
- * @return min value
- */
- private <T extends CalculusFieldElement<T>> T min(final double d, final T f) {
- return (f.getReal() > d) ? f.getField().getZero().newInstance(d) : f;
- }
- /** Compute max of two values, one double and one field element.
- * @param d double value
- * @param f field element
- * @param <T> type of the field elements
- * @return max value
- */
- private <T extends CalculusFieldElement<T>> T max(final double d, final T f) {
- return (f.getReal() <= d) ? f.getField().getZero().newInstance(d) : f;
- }
- }