LocalMagneticFieldFrame.java
/* Copyright 2002-2023 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.frames;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.Field;
import org.hipparchus.geometry.euclidean.threed.FieldRotation;
import org.hipparchus.geometry.euclidean.threed.Rotation;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.orekit.bodies.OneAxisEllipsoid;
import org.orekit.models.earth.GeoMagneticField;
import org.orekit.models.earth.ReferenceEllipsoid;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.utils.FieldPVCoordinates;
import org.orekit.utils.PVCoordinates;
/**
* This class handles a magnetic field variation attitude provider.
* <p>
* It was designed to be used as a Bdot attitude pointing law which align a specific body axis with Earth magnetic field
* vector.
* <p>
* Attitude control thought the magnetic field is called Bdot as it follows the sinusoidal variation of the Earth magnetic
* field vector, along the orbit. Magnetorquers are used on board to align the instrument, as so the satellite, with the
* planet magnetic field, producing a sinusoidal torque along the orbit.
*
* @author Alberto Ferrero
* @author Vincent Cucchietti
*/
public class LocalMagneticFieldFrame implements LOF {
/** Inertial frame in which position-velocity coordinates will be given when computing transform and rotation. */
private final Frame inertialFrame;
/** Vector used to define the local orbital frame. */
private final LOFBuilderVector lofBuilderVector;
/** Body shape. */
private final OneAxisEllipsoid wgs84BodyShape;
/** Earth's magnetic field. */
private final GeoMagneticField magneticField;
/**
* Constructor with default definition of the local orbital frame:
* <ul>
* <li> x: Magnetic field</li>
* <li> y: Completes orthonormal frame</li>
* <li> z: Cross product of the magnetic field with the orbital momentum</li>
* </ul>.
* <b>BEWARE : Do not use this constructor if it is planned to be used with an equatorial orbit as the magnetic field and
* orbital momentum vectors will be parallel and cause an error to be thrown</b>
*
* @param inertialFrame inertial frame in which position-velocity coordinates will be given when computing transform and
* rotation
* @param magneticField Earth magnetic field model
* @param bodyFrame body frame related to body shape
*/
public LocalMagneticFieldFrame(final Frame inertialFrame,
final GeoMagneticField magneticField,
final Frame bodyFrame) {
this(inertialFrame, magneticField, LOFBuilderVector.PLUS_MOMENTUM, bodyFrame);
}
/**
* Constructor with custom definition of the local orbital frame:
* <ul>
* <li> x: Magnetic field</li>
* <li> y: Completes orthonormal frame</li>
* <li> z: Cross product of the magnetic field with chosen {@link LOFBuilderVector vector}</li>
* </ul>
* For near-polar orbits, it is suggested to use the {@link LOFBuilderVector orbital momentum} to define the local
* orbital frame. However, for near-equatorial orbits, it is advised to use either the
* {@link LOFBuilderVector position or the velocity}.
*
* @param inertialFrame inertial frame in which position-velocity coordinates will be given when computing transform and
* rotation
* @param magneticField Earth magnetic field model
* @param lofBuilderVector vector used to define the local orbital frame
* @param bodyFrame body frame related to body shape
*/
public LocalMagneticFieldFrame(final Frame inertialFrame, final GeoMagneticField magneticField,
final LOFBuilderVector lofBuilderVector,
final Frame bodyFrame) {
this.inertialFrame = inertialFrame;
this.magneticField = magneticField;
this.lofBuilderVector = lofBuilderVector;
// Default WGS84 body shape as this is the one used by default in GeoMagneticField
this.wgs84BodyShape = ReferenceEllipsoid.getWgs84(bodyFrame);
}
/**
* {@inheritDoc} Direction as X axis aligned with magnetic field vector, Y axis aligned with the cross product of the
* magnetic field vector with chosen {@link LOFBuilderVector vector type}.
* <p>
* <b>BEWARE: In this implementation, the method simply fieldify the normal rotation with given field.
* Hence all derivatives are lost.</b>
*/
@Override
public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
final FieldAbsoluteDate<T> date,
final FieldPVCoordinates<T> pv) {
// TODO Implement field equivalent of "calculateField" method in GeoMagneticField
final Rotation rotation = rotationFromInertial(date.toAbsoluteDate(), pv.toPVCoordinates());
return new FieldRotation<>(field, rotation);
}
/**
* {@inheritDoc} Direction as X axis aligned with magnetic field vector, Z axis aligned with the cross product of the
* magnetic field vector with chosen {@link LOFBuilderVector vector type}.
*/
@Override
public Rotation rotationFromInertial(final AbsoluteDate date, final PVCoordinates pv) {
// Express satellite coordinates in body frame
final StaticTransform inertialToBodyFrame = inertialFrame.getStaticTransformTo(wgs84BodyShape.getBodyFrame(), date);
final Vector3D posBody = inertialToBodyFrame.transformPosition(pv.getPosition());
// Compute satellite coordinates LLA and magnetic field vector in body frame
final double lat = posBody.getDelta();
final double lng = posBody.getAlpha();
final double alt = posBody.getNorm() - wgs84BodyShape.getEquatorialRadius();
final Vector3D magnVectorBody = magneticField.calculateField(lat, lng, alt).getFieldVector();
// Compute magnetic field in inertial frame
final StaticTransform bodyToInertialFrame = inertialToBodyFrame.getInverse();
final Vector3D magnVector = bodyToInertialFrame.transformVector(magnVectorBody);
return new Rotation(magnVector, magnVector.crossProduct(lofBuilderVector.getVector(pv)),
Vector3D.PLUS_I, Vector3D.PLUS_K);
}
/** {@inheritDoc} */
@Override
public String getName() {
return "LOCAL_MAGNETIC_FIELD_FRAME";
}
/** Get interlai frame.
* @return inertial frame
*/
public Frame getInertialFrame() {
return inertialFrame;
}
/** Get geomagnetid field.
* @return geo magnetic field
*/
public GeoMagneticField getMagneticField() {
return magneticField;
}
/**
* Enum defining how the +j axis of the local orbital frame will be defined.
* <p>
* For example, if {@code MINUS_MOMENTUM} is chosen, +j aligned as the cross product of the momentum vector and the
* magnetic field vector. The resulting body frame will be +x aligned with magnetic field, +z aligned with negative
* momentum, +y orthonormal.
*/
public enum LOFBuilderVector {
/** Positive position vector. */
PLUS_POSITION {
/** {@inheritDoc} */
@Override
Vector3D getVector(final PVCoordinates pv) {
return pv.getPosition();
}
},
/** Positive velocity vector. */
PLUS_VELOCITY {
/** {@inheritDoc} */
@Override
Vector3D getVector(final PVCoordinates pv) {
return pv.getVelocity();
}
},
/** Positive orbital momentum vector. */
PLUS_MOMENTUM {
/** {@inheritDoc} */
@Override
Vector3D getVector(final PVCoordinates pv) {
return pv.getMomentum();
}
},
/** Negative position vector. */
MINUS_POSITION {
/** {@inheritDoc} */
@Override
Vector3D getVector(final PVCoordinates pv) {
return pv.getPosition().negate();
}
},
/** Negative velocity vector. */
MINUS_VELOCITY {
/** {@inheritDoc} */
@Override
Vector3D getVector(final PVCoordinates pv) {
return pv.getVelocity().negate();
}
},
/** Negative orbital momentum vector. */
MINUS_MOMENTUM {
/** {@inheritDoc} */
@Override
Vector3D getVector(final PVCoordinates pv) {
return pv.getMomentum().negate();
}
};
/**
* @param pv position-velocity coordinates expressed in the instance inertial frame
*
* @return Vector used to define the local orbital frame by computing the cross product of the magnetic field with
* this
*/
abstract Vector3D getVector(PVCoordinates pv);
}
}