TurnAroundRange.java
/* Copyright 2002-2024 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.estimation.measurements;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import org.hipparchus.Field;
import org.hipparchus.analysis.differentiation.Gradient;
import org.hipparchus.analysis.differentiation.GradientField;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.orekit.frames.FieldTransform;
import org.orekit.frames.Transform;
import org.orekit.propagation.SpacecraftState;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.utils.Constants;
import org.orekit.utils.FieldPVCoordinates;
import org.orekit.utils.PVCoordinates;
import org.orekit.utils.ParameterDriver;
import org.orekit.utils.TimeSpanMap.Span;
import org.orekit.utils.TimeStampedFieldPVCoordinates;
import org.orekit.utils.TimeStampedPVCoordinates;
/** Class modeling a turn-around range measurement using a primary ground station and a secondary ground station.
* <p>
* The measurement is considered to be a signal:
* - Emitted from the primary ground station
* - Reflected on the spacecraft
* - Reflected on the secondary ground station
* - Reflected on the spacecraft again
* - Received on the primary ground station
* Its value is the elapsed time between emission and reception
* divided by 2c were c is the speed of light.
* The motion of the stations and the spacecraft
* during the signal flight time are taken into account.
* The date of the measurement corresponds to the
* reception on ground of the reflected signal.
* </p>
* @author Thierry Ceolin
* @author Luc Maisonobe
* @author Maxime Journot
*
* @since 9.0
*/
public class TurnAroundRange extends GroundReceiverMeasurement<TurnAroundRange> {
/** Type of the measurement. */
public static final String MEASUREMENT_TYPE = "TurnAroundRange";
/** Secondary ground station reflecting the signal. */
private final GroundStation secondaryStation;
/** Simple constructor.
* @param primaryStation ground station from which measurement is performed
* @param secondaryStation ground station reflecting the signal
* @param date date of the measurement
* @param turnAroundRange observed value
* @param sigma theoretical standard deviation
* @param baseWeight base weight
* @param satellite satellite related to this measurement
* @since 9.3
*/
public TurnAroundRange(final GroundStation primaryStation, final GroundStation secondaryStation,
final AbsoluteDate date, final double turnAroundRange,
final double sigma, final double baseWeight,
final ObservableSatellite satellite) {
super(primaryStation, true, date, turnAroundRange, sigma, baseWeight, satellite);
// the secondary station clock is not used at all, we ignore the corresponding parameter driver
addParameterDriver(secondaryStation.getEastOffsetDriver());
addParameterDriver(secondaryStation.getNorthOffsetDriver());
addParameterDriver(secondaryStation.getZenithOffsetDriver());
addParameterDriver(secondaryStation.getPrimeMeridianOffsetDriver());
addParameterDriver(secondaryStation.getPrimeMeridianDriftDriver());
addParameterDriver(secondaryStation.getPolarOffsetXDriver());
addParameterDriver(secondaryStation.getPolarDriftXDriver());
addParameterDriver(secondaryStation.getPolarOffsetYDriver());
addParameterDriver(secondaryStation.getPolarDriftYDriver());
this.secondaryStation = secondaryStation;
}
/** Get the primary ground station from which measurement is performed.
* @return primary ground station from which measurement is performed
*/
public GroundStation getPrimaryStation() {
return getStation();
}
/** Get the secondary ground station reflecting the signal.
* @return secondary ground station reflecting the signal
*/
public GroundStation getSecondaryStation() {
return secondaryStation;
}
/** {@inheritDoc} */
@Override
protected EstimatedMeasurementBase<TurnAroundRange> theoreticalEvaluationWithoutDerivatives(final int iteration,
final int evaluation,
final SpacecraftState[] states) {
final SpacecraftState state = states[0];
// Time-stamped PV
final TimeStampedPVCoordinates pva = state.getPVCoordinates();
// The path of the signal is divided in two legs.
// Leg1: Emission from primary station to satellite in primaryTauU seconds
// + Reflection from satellite to secondary station in secondaryTauD seconds
// Leg2: Reflection from secondary station to satellite in secondaryTauU seconds
// + Reflection from satellite to primary station in primaryTaudD seconds
// The measurement is considered to be time stamped at reception on ground
// by the primary station. All times are therefore computed as backward offsets
// with respect to this reception time.
//
// Two intermediate spacecraft states are defined:
// - transitStateLeg2: State of the satellite when it bounced back the signal
// from secondary station to primary station during the 2nd leg
// - transitStateLeg1: State of the satellite when it bounced back the signal
// from primary station to secondary station during the 1st leg
// Compute propagation time for the 2nd leg of the signal path
// --
// Time difference between t (date of the measurement) and t' (date tagged in spacecraft state)
// (if state has already been set up to pre-compensate propagation delay,
// we will have delta = primaryTauD + secondaryTauU)
final double delta = getDate().durationFrom(state.getDate());
// transform between primary station topocentric frame (east-north-zenith) and inertial frame expressed as gradients
final Transform primaryToInert =
getStation().getOffsetToInertial(state.getFrame(), getDate(), false);
final AbsoluteDate measurementDate = primaryToInert.getDate();
// Primary station PV in inertial frame at measurement date
final TimeStampedPVCoordinates primaryArrival =
primaryToInert.transformPVCoordinates(new TimeStampedPVCoordinates(measurementDate,
Vector3D.ZERO, Vector3D.ZERO, Vector3D.ZERO));
// Compute propagation times
final double primaryTauD = signalTimeOfFlight(pva, primaryArrival.getPosition(), measurementDate,
state.getFrame());
// Elapsed time between state date t' and signal arrival to the transit state of the 2nd leg
final double dtLeg2 = delta - primaryTauD;
// Transit state where the satellite reflected the signal from secondary to primary station
final SpacecraftState transitStateLeg2 = state.shiftedBy(dtLeg2);
// Transit state pv of leg2 (re)computed with gradient
final TimeStampedPVCoordinates transitStateLeg2PV = pva.shiftedBy(dtLeg2);
// transform between secondary station topocentric frame (east-north-zenith) and inertial frame expressed as gradients
// The components of secondary station's position in offset frame are the 3 last derivative parameters
final AbsoluteDate approxReboundDate = measurementDate.shiftedBy(-delta);
final Transform secondaryToInertApprox =
secondaryStation.getOffsetToInertial(state.getFrame(), approxReboundDate, true);
// Secondary station PV in inertial frame at approximate rebound date on secondary station
final TimeStampedPVCoordinates QSecondaryApprox =
secondaryToInertApprox.transformPVCoordinates(new TimeStampedPVCoordinates(approxReboundDate,
Vector3D.ZERO, Vector3D.ZERO, Vector3D.ZERO));
// Uplink time of flight from secondary station to transit state of leg2
final double secondaryTauU = signalTimeOfFlight(QSecondaryApprox,
transitStateLeg2PV.getPosition(),
transitStateLeg2PV.getDate(),
state.getFrame());
// Total time of flight for leg 2
final double tauLeg2 = primaryTauD + secondaryTauU;
// Compute propagation time for the 1st leg of the signal path
// --
// Absolute date of rebound of the signal to secondary station
final AbsoluteDate reboundDate = measurementDate.shiftedBy(-tauLeg2);
final Transform secondaryToInert = secondaryStation.getOffsetToInertial(state.getFrame(), reboundDate, true);
// Secondary station PV in inertial frame at rebound date on secondary station
final TimeStampedPVCoordinates secondaryRebound =
secondaryToInert.transformPVCoordinates(new TimeStampedPVCoordinates(reboundDate,
Vector3D.ZERO, Vector3D.ZERO, Vector3D.ZERO));
// Downlink time of flight from transitStateLeg1 to secondary station at rebound date
final double secondaryTauD = signalTimeOfFlight(transitStateLeg2PV,
secondaryRebound.getPosition(),
reboundDate,
state.getFrame());
// Elapsed time between state date t' and signal arrival to the transit state of the 1st leg
final double dtLeg1 = dtLeg2 - secondaryTauU - secondaryTauD;
// Transit state pv of leg2 (re)computed
final TimeStampedPVCoordinates transitStateLeg1PV = pva.shiftedBy(dtLeg1);
// transform between primary station topocentric frame (east-north-zenith) and inertial frame
final AbsoluteDate approxEmissionDate = measurementDate.shiftedBy(-2 * (secondaryTauU + primaryTauD));
final Transform primaryToInertApprox = getStation().getOffsetToInertial(state.getFrame(), approxEmissionDate, true);
// Primary station PV in inertial frame at approximate emission date
final TimeStampedPVCoordinates QPrimaryApprox =
primaryToInertApprox.transformPVCoordinates(new TimeStampedPVCoordinates(approxEmissionDate,
Vector3D.ZERO, Vector3D.ZERO, Vector3D.ZERO));
// Uplink time of flight from primary station to transit state of leg1
final double primaryTauU = signalTimeOfFlight(QPrimaryApprox,
transitStateLeg1PV.getPosition(),
transitStateLeg1PV.getDate(),
state.getFrame());
// Primary station PV in inertial frame at exact emission date
final AbsoluteDate emissionDate = transitStateLeg1PV.getDate().shiftedBy(-primaryTauU);
final TimeStampedPVCoordinates primaryDeparture =
primaryToInertApprox.shiftedBy(emissionDate.durationFrom(primaryToInertApprox.getDate())).
transformPVCoordinates(new TimeStampedPVCoordinates(emissionDate, PVCoordinates.ZERO));
// Total time of flight for leg 1
final double tauLeg1 = secondaryTauD + primaryTauU;
// --
// Evaluate the turn-around range value and its derivatives
// --------------------------------------------------------
// The state we use to define the estimated measurement is a middle ground between the two transit states
// This is done to avoid calling "SpacecraftState.shiftedBy" function on long duration
// Thus we define the state at the date t" = date of rebound of the signal at the secondary station
// Or t" = t -primaryTauD -secondaryTauU
// The iterative process in the estimation ensures that, after several iterations, the date stamped in the
// state S in input of this function will be close to t"
// Therefore we will shift state S by:
// - +secondaryTauU to get transitStateLeg2
// - -secondaryTauD to get transitStateLeg1
final EstimatedMeasurementBase<TurnAroundRange> estimated =
new EstimatedMeasurementBase<>(this, iteration, evaluation,
new SpacecraftState[] {
transitStateLeg2.shiftedBy(-secondaryTauU)
},
new TimeStampedPVCoordinates[] {
primaryDeparture,
transitStateLeg1PV,
secondaryRebound,
transitStateLeg2.getPVCoordinates(),
primaryArrival
});
// Turn-around range value = Total time of flight for the 2 legs divided by 2 and multiplied by c
final double cOver2 = 0.5 * Constants.SPEED_OF_LIGHT;
final double turnAroundRange = (tauLeg2 + tauLeg1) * cOver2;
estimated.setEstimatedValue(turnAroundRange);
return estimated;
}
/** {@inheritDoc} */
@Override
protected EstimatedMeasurement<TurnAroundRange> theoreticalEvaluation(final int iteration, final int evaluation,
final SpacecraftState[] states) {
final SpacecraftState state = states[0];
// Turn around range derivatives are computed with respect to:
// - Spacecraft state in inertial frame
// - Primary station parameters
// - Secondary station parameters
// --------------------------
//
// - 0..2 - Position of the spacecraft in inertial frame
// - 3..5 - Velocity of the spacecraft in inertial frame
// - 6..n - stations' parameters (clock offset, station offsets, pole, prime meridian...)
int nbParams = 6;
final Map<String, Integer> indices = new HashMap<>();
for (ParameterDriver driver : getParametersDrivers()) {
// we have to check for duplicate keys because primary and secondary station share
// pole and prime meridian parameters names that must be considered
// as one set only (they are combined together by the estimation engine)
if (driver.isSelected()) {
for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
if (!indices.containsKey(span.getData())) {
indices.put(span.getData(), nbParams++);
}
}
}
}
final Field<Gradient> field = GradientField.getField(nbParams);
final FieldVector3D<Gradient> zero = FieldVector3D.getZero(field);
// Place the gradient in a time-stamped PV
final TimeStampedFieldPVCoordinates<Gradient> pvaDS = getCoordinates(state, 0, nbParams);
// The path of the signal is divided in two legs.
// Leg1: Emission from primary station to satellite in primaryTauU seconds
// + Reflection from satellite to secondary station in secondaryTauD seconds
// Leg2: Reflection from secondary station to satellite in secondaryTauU seconds
// + Reflection from satellite to primary station in primaryTaudD seconds
// The measurement is considered to be time stamped at reception on ground
// by the primary station. All times are therefore computed as backward offsets
// with respect to this reception time.
//
// Two intermediate spacecraft states are defined:
// - transitStateLeg2: State of the satellite when it bounced back the signal
// from secondary station to primary station during the 2nd leg
// - transitStateLeg1: State of the satellite when it bounced back the signal
// from primary station to secondary station during the 1st leg
// Compute propagation time for the 2nd leg of the signal path
// --
// Time difference between t (date of the measurement) and t' (date tagged in spacecraft state)
// (if state has already been set up to pre-compensate propagation delay,
// we will have delta = primaryTauD + secondaryTauU)
final double delta = getDate().durationFrom(state.getDate());
// transform between primary station topocentric frame (east-north-zenith) and inertial frame expressed as gradients
final FieldTransform<Gradient> primaryToInert =
getStation().getOffsetToInertial(state.getFrame(), getDate(), nbParams, indices);
final FieldAbsoluteDate<Gradient> measurementDateDS = primaryToInert.getFieldDate();
// Primary station PV in inertial frame at measurement date
final TimeStampedFieldPVCoordinates<Gradient> primaryArrival =
primaryToInert.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(measurementDateDS,
zero, zero, zero));
// Compute propagation times
final Gradient primaryTauD = signalTimeOfFlight(pvaDS, primaryArrival.getPosition(),
measurementDateDS, state.getFrame());
// Elapsed time between state date t' and signal arrival to the transit state of the 2nd leg
final Gradient dtLeg2 = primaryTauD.negate().add(delta);
// Transit state where the satellite reflected the signal from secondary to primary station
final SpacecraftState transitStateLeg2 = state.shiftedBy(dtLeg2.getValue());
// Transit state pv of leg2 (re)computed with gradient
final TimeStampedFieldPVCoordinates<Gradient> transitStateLeg2PV = pvaDS.shiftedBy(dtLeg2);
// transform between secondary station topocentric frame (east-north-zenith) and inertial frame expressed as gradients
// The components of secondary station's position in offset frame are the 3 last derivative parameters
final FieldAbsoluteDate<Gradient> approxReboundDate = measurementDateDS.shiftedBy(-delta);
final FieldTransform<Gradient> secondaryToInertApprox =
secondaryStation.getOffsetToInertial(state.getFrame(), approxReboundDate, nbParams, indices);
// Secondary station PV in inertial frame at approximate rebound date on secondary station
final TimeStampedFieldPVCoordinates<Gradient> QSecondaryApprox =
secondaryToInertApprox.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(approxReboundDate,
zero, zero, zero));
// Uplink time of flight from secondary station to transit state of leg2
final Gradient secondaryTauU = signalTimeOfFlight(QSecondaryApprox,
transitStateLeg2PV.getPosition(),
transitStateLeg2PV.getDate(),
state.getFrame());
// Total time of flight for leg 2
final Gradient tauLeg2 = primaryTauD.add(secondaryTauU);
// Compute propagation time for the 1st leg of the signal path
// --
// Absolute date of rebound of the signal to secondary station
final FieldAbsoluteDate<Gradient> reboundDateDS = measurementDateDS.shiftedBy(tauLeg2.negate());
final FieldTransform<Gradient> secondaryToInert =
secondaryStation.getOffsetToInertial(state.getFrame(), reboundDateDS, nbParams, indices);
// Secondary station PV in inertial frame at rebound date on secondary station
final TimeStampedFieldPVCoordinates<Gradient> secondaryRebound =
secondaryToInert.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(reboundDateDS,
FieldPVCoordinates.getZero(field)));
// Downlink time of flight from transitStateLeg1 to secondary station at rebound date
final Gradient secondaryTauD = signalTimeOfFlight(transitStateLeg2PV,
secondaryRebound.getPosition(),
reboundDateDS,
state.getFrame());
// Elapsed time between state date t' and signal arrival to the transit state of the 1st leg
final Gradient dtLeg1 = dtLeg2.subtract(secondaryTauU).subtract(secondaryTauD);
// Transit state pv of leg2 (re)computed with gradients
final TimeStampedFieldPVCoordinates<Gradient> transitStateLeg1PV = pvaDS.shiftedBy(dtLeg1);
// transform between primary station topocentric frame (east-north-zenith) and inertial frame expressed as gradients
// The components of primary station's position in offset frame are the 3 third derivative parameters
final FieldAbsoluteDate<Gradient> approxEmissionDate =
measurementDateDS.shiftedBy(-2 * (secondaryTauU.getValue() + primaryTauD.getValue()));
final FieldTransform<Gradient> primaryToInertApprox =
getStation().getOffsetToInertial(state.getFrame(), approxEmissionDate, nbParams, indices);
// Primary station PV in inertial frame at approximate emission date
final TimeStampedFieldPVCoordinates<Gradient> QPrimaryApprox =
primaryToInertApprox.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(approxEmissionDate,
zero, zero, zero));
// Uplink time of flight from primary station to transit state of leg1
final Gradient primaryTauU = signalTimeOfFlight(QPrimaryApprox,
transitStateLeg1PV.getPosition(),
transitStateLeg1PV.getDate(),
state.getFrame());
// Primary station PV in inertial frame at exact emission date
final AbsoluteDate emissionDate = transitStateLeg1PV.getDate().toAbsoluteDate().shiftedBy(-primaryTauU.getValue());
final TimeStampedPVCoordinates primaryDeparture =
primaryToInertApprox.shiftedBy(emissionDate.durationFrom(primaryToInertApprox.getDate())).
transformPVCoordinates(new TimeStampedPVCoordinates(emissionDate, PVCoordinates.ZERO)).
toTimeStampedPVCoordinates();
// Total time of flight for leg 1
final Gradient tauLeg1 = secondaryTauD.add(primaryTauU);
// --
// Evaluate the turn-around range value and its derivatives
// --------------------------------------------------------
// The state we use to define the estimated measurement is a middle ground between the two transit states
// This is done to avoid calling "SpacecraftState.shiftedBy" function on long duration
// Thus we define the state at the date t" = date of rebound of the signal at the secondary station
// Or t" = t -primaryTauD -secondaryTauU
// The iterative process in the estimation ensures that, after several iterations, the date stamped in the
// state S in input of this function will be close to t"
// Therefore we will shift state S by:
// - +secondaryTauU to get transitStateLeg2
// - -secondaryTauD to get transitStateLeg1
final EstimatedMeasurement<TurnAroundRange> estimated =
new EstimatedMeasurement<>(this, iteration, evaluation,
new SpacecraftState[] {
transitStateLeg2.shiftedBy(-secondaryTauU.getValue())
},
new TimeStampedPVCoordinates[] {
primaryDeparture,
transitStateLeg1PV.toTimeStampedPVCoordinates(),
secondaryRebound.toTimeStampedPVCoordinates(),
transitStateLeg2.getPVCoordinates(),
primaryArrival.toTimeStampedPVCoordinates()
});
// Turn-around range value = Total time of flight for the 2 legs divided by 2 and multiplied by c
final double cOver2 = 0.5 * Constants.SPEED_OF_LIGHT;
final Gradient turnAroundRange = (tauLeg2.add(tauLeg1)).multiply(cOver2);
estimated.setEstimatedValue(turnAroundRange.getValue());
// Turn-around range first order derivatives with respect to state
final double[] derivatives = turnAroundRange.getGradient();
estimated.setStateDerivatives(0, Arrays.copyOfRange(derivatives, 0, 6));
// Set first order derivatives with respect to parameters
for (final ParameterDriver driver : getParametersDrivers()) {
for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
final Integer index = indices.get(span.getData());
if (index != null) {
estimated.setParameterDerivatives(driver, span.getStart(), derivatives[index]);
}
}
}
return estimated;
}
}