SemiAnalyticalUnscentedKalmanEstimator.java
- /* Copyright 2002-2024 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.estimation.sequential;
- import java.util.Collections;
- import java.util.List;
- import org.hipparchus.filtering.kalman.unscented.UnscentedKalmanFilter;
- import org.hipparchus.linear.MatrixDecomposer;
- import org.hipparchus.util.UnscentedTransformProvider;
- import org.orekit.estimation.measurements.ObservedMeasurement;
- import org.orekit.propagation.conversion.DSSTPropagatorBuilder;
- import org.orekit.propagation.semianalytical.dsst.DSSTPropagator;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.ParameterDriversList;
- /**
- * Implementation of an Unscented Semi-analytical Kalman filter (USKF) to perform orbit determination.
- * <p>
- * The filter uses a {@link DSSTPropagatorBuilder}.
- * </p>
- * <p>
- * The estimated parameters are driven by {@link ParameterDriver} objects. They are of 3 different types:<ol>
- * <li><b>Orbital parameters</b>:The position and velocity of the spacecraft, or, more generally, its orbit.<br>
- * These parameters are retrieved from the reference trajectory propagator builder when the filter is initialized.</li>
- * <li><b>Propagation parameters</b>: Some parameters modeling physical processes (SRP or drag coefficients etc...).<br>
- * They are also retrieved from the propagator builder during the initialization phase.</li>
- * <li><b>Measurements parameters</b>: Parameters related to measurements (station biases, positions etc...).<br>
- * They are passed down to the filter in its constructor.</li>
- * </ol>
- * <p>
- * The Kalman filter implementation used is provided by the underlying mathematical library Hipparchus.
- * All the variables seen by Hipparchus (states, covariances...) are normalized
- * using a specific scale for each estimated parameters or standard deviation noise for each measurement components.
- * </p>
- *
- * <p>An {@link SemiAnalyticalUnscentedKalmanEstimator} object is built using the {@link SemiAnalyticalUnscentedKalmanEstimatorBuilder#build() build}
- * method of a {@link SemiAnalyticalUnscentedKalmanEstimatorBuilder}.</p>
- *
- * @author Gaƫtan Pierre
- * @author Bryan Cazabonne
- * @since 11.3
- */
- public class SemiAnalyticalUnscentedKalmanEstimator extends AbstractKalmanEstimator {
- /** Unscented Kalman filter process model. */
- private final SemiAnalyticalUnscentedKalmanModel processModel;
- /** Filter. */
- private final UnscentedKalmanFilter<MeasurementDecorator> filter;
- /** Unscented Kalman filter estimator constructor (package private).
- * @param decomposer decomposer to use for the correction phase
- * @param propagatorBuilder propagator builder used to evaluate the orbit.
- * @param processNoiseMatricesProvider provider for process noise matrix
- * @param estimatedMeasurementParameters measurement parameters to estimate
- * @param measurementProcessNoiseMatrix provider for measurement process noise matrix
- * @param utProvider provider for the unscented transform
- */
- SemiAnalyticalUnscentedKalmanEstimator(final MatrixDecomposer decomposer,
- final DSSTPropagatorBuilder propagatorBuilder,
- final CovarianceMatrixProvider processNoiseMatricesProvider,
- final ParameterDriversList estimatedMeasurementParameters,
- final CovarianceMatrixProvider measurementProcessNoiseMatrix,
- final UnscentedTransformProvider utProvider) {
- super(Collections.singletonList(propagatorBuilder));
- // Build the process model and measurement model
- this.processModel = new SemiAnalyticalUnscentedKalmanModel(propagatorBuilder, processNoiseMatricesProvider,
- estimatedMeasurementParameters, measurementProcessNoiseMatrix);
- // Unscented Kalman Filter of Hipparchus
- this.filter = new UnscentedKalmanFilter<>(decomposer, processModel, processModel.getEstimate(), utProvider);
- }
- /** {@inheritDoc}. */
- @Override
- protected KalmanEstimation getKalmanEstimation() {
- return processModel;
- }
- /** Set the observer.
- * @param observer the observer
- */
- public void setObserver(final KalmanObserver observer) {
- this.processModel.setObserver(observer);
- }
- /** Process a single measurement.
- * <p>
- * Update the filter with the new measurement by calling the estimate method.
- * </p>
- * @param observedMeasurements the list of measurements to process
- * @return estimated propagators
- */
- public DSSTPropagator processMeasurements(final List<ObservedMeasurement<?>> observedMeasurements) {
- return processModel.processMeasurements(observedMeasurements, filter);
- }
- }