IsotropicRadiationClassicalConvention.java
- /* Copyright 2002-2024 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.forces.radiation;
- import java.util.ArrayList;
- import java.util.Collections;
- import java.util.List;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.hipparchus.util.FastMath;
- import org.orekit.propagation.FieldSpacecraftState;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.utils.ParameterDriver;
- /** This class represents the features of a simplified spacecraft.
- * <p>This model uses the classical thermo-optical coefficients
- * Ca for absorption, Cs for specular reflection and Cd for diffuse
- * reflection. The equation Ca + Cs + Cd = 1 always holds.
- * </p>
- * <p>
- * A less standard set of coefficients α = Ca for absorption and
- * τ = Cs/(1-Ca) for specular reflection is implemented in the sister
- * class {@link IsotropicRadiationCNES95Convention}.
- * </p>
- *
- * @see org.orekit.forces.BoxAndSolarArraySpacecraft
- * @see org.orekit.forces.drag.IsotropicDrag
- * @see IsotropicRadiationCNES95Convention
- * @author Luc Maisonobe
- * @since 7.1
- */
- public class IsotropicRadiationClassicalConvention implements RadiationSensitive {
- /** Parameters scaling factor.
- * <p>
- * We use a power of 2 to avoid numeric noise introduction
- * in the multiplications/divisions sequences.
- * </p>
- */
- private final double SCALE = FastMath.scalb(1.0, -3);
- /** Drivers for absorption and reflection coefficients. */
- private final List<ParameterDriver> parameterDrivers;
- /** Cross section (m²). */
- private final double crossSection;
- /** Simple constructor.
- * @param crossSection Surface (m²)
- * @param ca absorption coefficient Ca between 0.0 an 1.0
- * @param cs specular reflection coefficient Cs between 0.0 an 1.0
- */
- public IsotropicRadiationClassicalConvention(final double crossSection, final double ca, final double cs) {
- this.parameterDrivers = new ArrayList<>(3);
- parameterDrivers.add(new ParameterDriver(RadiationSensitive.GLOBAL_RADIATION_FACTOR, 1.0, SCALE, 0.0, Double.POSITIVE_INFINITY));
- parameterDrivers.add(new ParameterDriver(RadiationSensitive.ABSORPTION_COEFFICIENT, ca, SCALE, 0.0, 1.0));
- parameterDrivers.add(new ParameterDriver(RadiationSensitive.REFLECTION_COEFFICIENT, cs, SCALE, 0.0, 1.0));
- this.crossSection = crossSection;
- }
- /** {@inheritDoc} */
- @Override
- public List<ParameterDriver> getRadiationParametersDrivers() {
- return Collections.unmodifiableList(parameterDrivers);
- }
- /** {@inheritDoc} */
- @Override
- public Vector3D radiationPressureAcceleration(final SpacecraftState state, final Vector3D flux,
- final double[] parameters) {
- final double ca = parameters[1];
- final double cs = parameters[2];
- final double kP = parameters[0] * crossSection * (1 + 4 * (1.0 - ca - cs) / 9.0);
- return new Vector3D(kP / state.getMass(), flux);
- }
- /** {@inheritDoc} */
- @Override
- public <T extends CalculusFieldElement<T>> FieldVector3D<T>
- radiationPressureAcceleration(final FieldSpacecraftState<T> state,
- final FieldVector3D<T> flux,
- final T[] parameters) {
- final T ca = parameters[1];
- final T cs = parameters[2];
- final T kP = ca.add(cs).negate().add(1).multiply(4.0 / 9.0).add(1).
- multiply(parameters[0]).multiply(crossSection);
- return new FieldVector3D<>(state.getMass().reciprocal().multiply(kP), flux);
- }
- }