StateTransitionMatrixGenerator.java
- /* Copyright 2002-2024 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.propagation.numerical;
- import java.util.HashMap;
- import java.util.List;
- import java.util.Map;
- import org.hipparchus.analysis.differentiation.Gradient;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.linear.MatrixUtils;
- import org.hipparchus.linear.QRDecomposition;
- import org.hipparchus.linear.RealMatrix;
- import org.hipparchus.util.Precision;
- import org.orekit.attitudes.AttitudeProvider;
- import org.orekit.attitudes.AttitudeProviderModifier;
- import org.orekit.errors.OrekitException;
- import org.orekit.forces.ForceModel;
- import org.orekit.orbits.OrbitType;
- import org.orekit.orbits.PositionAngleType;
- import org.orekit.propagation.FieldSpacecraftState;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.propagation.integration.AdditionalDerivativesProvider;
- import org.orekit.propagation.integration.CombinedDerivatives;
- import org.orekit.utils.DoubleArrayDictionary;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.TimeSpanMap.Span;
- /** Generator for State Transition Matrix.
- * @author Luc Maisonobe
- * @author Melina Vanel
- * @since 11.1
- */
- class StateTransitionMatrixGenerator implements AdditionalDerivativesProvider {
- /** Threshold for matrix solving. */
- private static final double THRESHOLD = Precision.SAFE_MIN;
- /** Space dimension. */
- private static final int SPACE_DIMENSION = 3;
- /** State dimension. */
- public static final int STATE_DIMENSION = 2 * SPACE_DIMENSION;
- /** Name of the Cartesian STM additional state. */
- private final String stmName;
- /** Force models used in propagation. */
- private final List<ForceModel> forceModels;
- /** Attitude provider used in propagation. */
- private final AttitudeProvider attitudeProvider;
- /** Observers for partial derivatives. */
- private final Map<String, PartialsObserver> partialsObservers;
- /** Simple constructor.
- * @param stmName name of the Cartesian STM additional state
- * @param forceModels force models used in propagation
- * @param attitudeProvider attitude provider used in propagation
- */
- StateTransitionMatrixGenerator(final String stmName, final List<ForceModel> forceModels,
- final AttitudeProvider attitudeProvider) {
- this.stmName = stmName;
- this.forceModels = forceModels;
- this.attitudeProvider = attitudeProvider;
- this.partialsObservers = new HashMap<>();
- }
- /** Register an observer for partial derivatives.
- * <p>
- * The observer {@link PartialsObserver#partialsComputed(SpacecraftState, double[], double[])} partialsComputed}
- * method will be called when partial derivatives are computed, as a side effect of
- * calling {@link #generate(SpacecraftState)}
- * </p>
- * @param name name of the parameter driver this observer is interested in (may be null)
- * @param observer observer to register
- */
- void addObserver(final String name, final PartialsObserver observer) {
- partialsObservers.put(name, observer);
- }
- /** {@inheritDoc} */
- @Override
- public String getName() {
- return stmName;
- }
- /** {@inheritDoc} */
- @Override
- public int getDimension() {
- return STATE_DIMENSION * STATE_DIMENSION;
- }
- /** {@inheritDoc} */
- @Override
- public boolean yields(final SpacecraftState state) {
- return !state.hasAdditionalState(getName());
- }
- /** Set the initial value of the State Transition Matrix.
- * <p>
- * The returned state must be added to the propagator.
- * </p>
- * @param state initial state
- * @param dYdY0 initial State Transition Matrix ∂Y/∂Y₀,
- * if null (which is the most frequent case), assumed to be 6x6 identity
- * @param orbitType orbit type used for states Y and Y₀ in {@code dYdY0}
- * @param positionAngleType position angle used states Y and Y₀ in {@code dYdY0}
- * @return state with initial STM (converted to Cartesian ∂C/∂Y₀) added
- */
- SpacecraftState setInitialStateTransitionMatrix(final SpacecraftState state,
- final RealMatrix dYdY0,
- final OrbitType orbitType,
- final PositionAngleType positionAngleType) {
- final RealMatrix nonNullDYdY0;
- if (dYdY0 == null) {
- nonNullDYdY0 = MatrixUtils.createRealIdentityMatrix(STATE_DIMENSION);
- } else {
- if (dYdY0.getRowDimension() != STATE_DIMENSION ||
- dYdY0.getColumnDimension() != STATE_DIMENSION) {
- throw new OrekitException(LocalizedCoreFormats.DIMENSIONS_MISMATCH_2x2,
- dYdY0.getRowDimension(), dYdY0.getColumnDimension(),
- STATE_DIMENSION, STATE_DIMENSION);
- }
- nonNullDYdY0 = dYdY0;
- }
- // convert to Cartesian STM
- final RealMatrix dCdY0;
- if (state.isOrbitDefined()) {
- final double[][] dYdC = new double[STATE_DIMENSION][STATE_DIMENSION];
- orbitType.convertType(state.getOrbit()).getJacobianWrtCartesian(positionAngleType, dYdC);
- dCdY0 = new QRDecomposition(MatrixUtils.createRealMatrix(dYdC), THRESHOLD).getSolver().solve(nonNullDYdY0);
- } else {
- dCdY0 = nonNullDYdY0;
- }
- // flatten matrix
- final double[] flat = new double[STATE_DIMENSION * STATE_DIMENSION];
- int k = 0;
- for (int i = 0; i < STATE_DIMENSION; ++i) {
- for (int j = 0; j < STATE_DIMENSION; ++j) {
- flat[k++] = dCdY0.getEntry(i, j);
- }
- }
- // set additional state
- return state.addAdditionalState(stmName, flat);
- }
- /** {@inheritDoc} */
- public CombinedDerivatives combinedDerivatives(final SpacecraftState state) {
- // Assuming position is (px, py, pz), velocity is (vx, vy, vz) and the acceleration
- // due to the force models is (Σ ax, Σ ay, Σ az), the differential equation for
- // Cartesian State Transition Matrix ∂C/∂Y₀ for the contribution of all force models is:
- // [ 0 0 0 1 0 0 ]
- // [ 0 0 0 0 1 0 ]
- // d(∂C/∂Y₀)/dt = [ 0 0 0 1 0 1 ] ⨯ ∂C/∂Y₀
- // [Σ dax/dpx Σ dax/dpy Σ dax/dpz Σ dax/dvx Σ dax/dvy Σ dax/dvz]
- // [Σ day/dpx Σ day/dpy Σ dax/dpz Σ day/dvx Σ day/dvy Σ dax/dvz]
- // [Σ daz/dpx Σ daz/dpy Σ dax/dpz Σ daz/dvx Σ daz/dvy Σ dax/dvz]
- // some force models depend on velocity (either directly or through attitude),
- // whereas some other force models depend only on position.
- // For the latter, the lower right part of the matrix is zero
- final double[] factor = computePartials(state);
- // retrieve current State Transition Matrix
- final double[] p = state.getAdditionalState(getName());
- final double[] pDot = new double[p.length];
- // perform multiplication
- multiplyMatrix(factor, p, pDot, STATE_DIMENSION);
- return new CombinedDerivatives(pDot, null);
- }
- /** Compute evolution matrix product.
- * <p>
- * This method computes \(Y = F \times X\) where the factor matrix is:
- * \[F = \begin{matrix}
- * 0 & 0 & 0 & 1 & 0 & 0 \\
- * 0 & 0 & 0 & 0 & 1 & 0 \\
- * 0 & 0 & 0 & 0 & 0 & 1 \\
- * \sum \frac{da_x}{dp_x} & \sum\frac{da_x}{dp_y} & \sum\frac{da_x}{dp_z} & \sum\frac{da_x}{dv_x} & \sum\frac{da_x}{dv_y} & \sum\frac{da_x}{dv_z}\\
- * \sum \frac{da_y}{dp_x} & \sum\frac{da_y}{dp_y} & \sum\frac{da_y}{dp_z} & \sum\frac{da_y}{dv_x} & \sum\frac{da_y}{dv_y} & \sum\frac{da_y}{dv_z}\\
- * \sum \frac{da_z}{dp_x} & \sum\frac{da_z}{dp_y} & \sum\frac{da_z}{dp_z} & \sum\frac{da_z}{dv_x} & \sum\frac{da_z}{dv_y} & \sum\frac{da_z}{dv_z}
- * \end{matrix}\]
- * </p>
- * @param factor factor matrix
- * @param x right factor of the multiplication, as a flatten array in row major order
- * @param y placeholder where to put the result, as a flatten array in row major order
- * @param columns number of columns of both x and y (so their dimensions are 6 x columns)
- */
- static void multiplyMatrix(final double[] factor, final double[] x, final double[] y, final int columns) {
- final int n = SPACE_DIMENSION * columns;
- // handle first three rows by a simple copy
- System.arraycopy(x, n, y, 0, n);
- // regular multiplication for the last three rows
- for (int j = 0; j < columns; ++j) {
- y[n + j ] = factor[ 0] * x[j ] + factor[ 1] * x[j + columns] + factor[ 2] * x[j + 2 * columns] +
- factor[ 3] * x[j + 3 * columns] + factor[ 4] * x[j + 4 * columns] + factor[ 5] * x[j + 5 * columns];
- y[n + j + columns] = factor[ 6] * x[j ] + factor[ 7] * x[j + columns] + factor[ 8] * x[j + 2 * columns] +
- factor[ 9] * x[j + 3 * columns] + factor[10] * x[j + 4 * columns] + factor[11] * x[j + 5 * columns];
- y[n + j + 2 * columns] = factor[12] * x[j ] + factor[13] * x[j + columns] + factor[14] * x[j + 2 * columns] +
- factor[15] * x[j + 3 * columns] + factor[16] * x[j + 4 * columns] + factor[17] * x[j + 5 * columns];
- }
- }
- /** Compute the various partial derivatives.
- * @param state current spacecraft state
- * @return factor matrix
- */
- private double[] computePartials(final SpacecraftState state) {
- // set up containers for partial derivatives
- final double[] factor = new double[SPACE_DIMENSION * STATE_DIMENSION];
- final DoubleArrayDictionary accelerationPartials = new DoubleArrayDictionary();
- // evaluate contribution of all force models
- final AttitudeProvider equivalentAttitudeProvider = wrapAttitudeProviderIfPossible(forceModels, attitudeProvider);
- final boolean isThereAnyForceNotDependingOnlyOnPosition = forceModels.stream().anyMatch(force -> !force.dependsOnPositionOnly());
- final NumericalGradientConverter posOnlyConverter = new NumericalGradientConverter(state, SPACE_DIMENSION, equivalentAttitudeProvider);
- final NumericalGradientConverter fullConverter = isThereAnyForceNotDependingOnlyOnPosition ?
- new NumericalGradientConverter(state, STATE_DIMENSION, equivalentAttitudeProvider) : posOnlyConverter;
- for (final ForceModel forceModel : forceModels) {
- final NumericalGradientConverter converter = forceModel.dependsOnPositionOnly() ? posOnlyConverter : fullConverter;
- final FieldSpacecraftState<Gradient> dsState = converter.getState(forceModel);
- final Gradient[] parameters = converter.getParametersAtStateDate(dsState, forceModel);
- final FieldVector3D<Gradient> acceleration = forceModel.acceleration(dsState, parameters);
- final double[] gradX = acceleration.getX().getGradient();
- final double[] gradY = acceleration.getY().getGradient();
- final double[] gradZ = acceleration.getZ().getGradient();
- // lower left part of the factor matrix
- factor[ 0] += gradX[0];
- factor[ 1] += gradX[1];
- factor[ 2] += gradX[2];
- factor[ 6] += gradY[0];
- factor[ 7] += gradY[1];
- factor[ 8] += gradY[2];
- factor[12] += gradZ[0];
- factor[13] += gradZ[1];
- factor[14] += gradZ[2];
- if (!forceModel.dependsOnPositionOnly()) {
- // lower right part of the factor matrix
- factor[ 3] += gradX[3];
- factor[ 4] += gradX[4];
- factor[ 5] += gradX[5];
- factor[ 9] += gradY[3];
- factor[10] += gradY[4];
- factor[11] += gradY[5];
- factor[15] += gradZ[3];
- factor[16] += gradZ[4];
- factor[17] += gradZ[5];
- }
- // partials derivatives with respect to parameters
- int paramsIndex = converter.getFreeStateParameters();
- for (ParameterDriver driver : forceModel.getParametersDrivers()) {
- if (driver.isSelected()) {
- // for each span (for each estimated value) corresponding name is added
- for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
- // get the partials derivatives for this driver
- DoubleArrayDictionary.Entry entry = accelerationPartials.getEntry(span.getData());
- if (entry == null) {
- // create an entry filled with zeroes
- accelerationPartials.put(span.getData(), new double[SPACE_DIMENSION]);
- entry = accelerationPartials.getEntry(span.getData());
- }
- // add the contribution of the current force model
- entry.increment(new double[] {
- gradX[paramsIndex], gradY[paramsIndex], gradZ[paramsIndex]
- });
- ++paramsIndex;
- }
- }
- }
- // notify observers
- for (Map.Entry<String, PartialsObserver> observersEntry : partialsObservers.entrySet()) {
- final DoubleArrayDictionary.Entry entry = accelerationPartials.getEntry(observersEntry.getKey());
- observersEntry.getValue().partialsComputed(state, factor, entry == null ? new double[SPACE_DIMENSION] : entry.getValue());
- }
- }
- return factor;
- }
- /**
- * Method that first checks if it is possible to replace the attitude provider with a computationally cheaper one
- * to evaluate. If applicable, the new provider only computes the rotation and uses dummy rate and acceleration,
- * since they should not be used later on.
- * @param forceModels list of forces
- * @param attitudeProvider original attitude provider
- * @return same provider if at least one forces used attitude derivatives, otherwise one wrapping the old one for
- * the rotation
- */
- private static AttitudeProvider wrapAttitudeProviderIfPossible(final List<ForceModel> forceModels,
- final AttitudeProvider attitudeProvider) {
- if (forceModels.stream().anyMatch(ForceModel::dependsOnAttitudeRate)) {
- // at least one force uses an attitude rate, need to keep the original provider
- return attitudeProvider;
- } else {
- // the original provider can be replaced by a lighter one for performance
- return AttitudeProviderModifier.getFrozenAttitudeProvider(attitudeProvider);
- }
- }
- /** Interface for observing partials derivatives. */
- public interface PartialsObserver {
- /** Callback called when partial derivatives have been computed.
- * <p>
- * The factor matrix is:
- * \[F = \begin{matrix}
- * 0 & 0 & 0 & 1 & 0 & 0 \\
- * 0 & 0 & 0 & 0 & 1 & 0 \\
- * 0 & 0 & 0 & 0 & 0 & 1 \\
- * \sum \frac{da_x}{dp_x} & \sum\frac{da_x}{dp_y} & \sum\frac{da_x}{dp_z} & \sum\frac{da_x}{dv_x} & \sum\frac{da_x}{dv_y} & \sum\frac{da_x}{dv_z}\\
- * \sum \frac{da_y}{dp_x} & \sum\frac{da_y}{dp_y} & \sum\frac{da_y}{dp_z} & \sum\frac{da_y}{dv_x} & \sum\frac{da_y}{dv_y} & \sum\frac{da_y}{dv_z}\\
- * \sum \frac{da_z}{dp_x} & \sum\frac{da_z}{dp_y} & \sum\frac{da_z}{dp_z} & \sum\frac{da_z}{dv_x} & \sum\frac{da_z}{dv_y} & \sum\frac{da_z}{dv_z}
- * \end{matrix}\]
- * </p>
- * @param state current spacecraft state
- * @param factor factor matrix, flattened along rows
- * @param accelerationPartials partials derivatives of acceleration with respect to the parameter driver
- * that was registered (zero if no parameters were not selected or parameter is unknown)
- */
- void partialsComputed(SpacecraftState state, double[] factor, double[] accelerationPartials);
- }
- }