PointingPanel.java
/* Copyright 2002-2024 Luc Maisonobe
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.forces;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.Precision;
import org.orekit.propagation.FieldSpacecraftState;
import org.orekit.propagation.SpacecraftState;
import org.orekit.utils.ExtendedPVCoordinatesProvider;
/** Class representing one panel of a satellite, roughly pointing towards some target.
* <p>
* It is mainly used to represent a rotating solar array that points towards the Sun.
* </p>
* <p>
* The panel rotation with respect to satellite body is the best pointing orientation
* achievable when the rotation axix is fixed by body attitude. Target is therefore
* always exactly in meridian plane defined by rotation axis and panel normal vector.
* </p>
* <p>
* These panels are considered to be always {@link #isDoubleSided() double-sided}.
* </p>
*
* @author Luc Maisonobe
* @since 3.0
*/
public class PointingPanel extends Panel {
/** Rotation axis. */
private final Vector3D rotationAxis;
/** Target towards which the panel will point. */
private final ExtendedPVCoordinatesProvider target;
/** Simple constructor.
* <p>
* As the sum of absorption coefficient, specular reflection coefficient and
* diffuse reflection coefficient is exactly 1, only the first two coefficients
* are needed here, the third one is deduced from the other ones.
* </p>
* <p>
* The panel is considered to rotate about one axis in order to make its normal
* point as close as possible to the target. It means the target will always be
* in the plane defined by the rotation axis and the panel normal.
* </p>
* @param rotationAxis rotation axis of the panel
* @param target target towards which the panel will point (the Sun for a solar array)
* @param area panel area in m²
* @param drag drag coefficient
* @param liftRatio drag lift ratio (proportion between 0 and 1 of atmosphere modecules
* that will experience specular reflection when hitting spacecraft instead
* of experiencing diffuse reflection, hence producing lift)
* @param absorption radiation pressure absorption coefficient (between 0 and 1)
* @param reflection radiation pressure specular reflection coefficient (between 0 and 1)
*/
public PointingPanel(final Vector3D rotationAxis, final ExtendedPVCoordinatesProvider target,
final double area,
final double drag, final double liftRatio,
final double absorption, final double reflection) {
super(area, true, drag, liftRatio, absorption, reflection);
this.rotationAxis = rotationAxis.normalize();
this.target = target;
}
/** {@inheritDoc} */
@Override
public Vector3D getNormal(final SpacecraftState state) {
// compute orientation for best pointing
final Vector3D targetInert = target.getPosition(state.getDate(), state.getFrame()).
subtract(state.getPosition()).normalize();
final Vector3D targetSpacecraft = state.getAttitude().getRotation().applyTo(targetInert);
final double d = Vector3D.dotProduct(targetSpacecraft, rotationAxis);
final double f = 1 - d * d;
if (f < Precision.EPSILON) {
// extremely rare case: the target is along panel rotation axis
// (there will not be much output power if it is a solar array…)
// we set up an arbitrary normal
return rotationAxis.orthogonal();
}
final double s = 1.0 / FastMath.sqrt(f);
return new Vector3D(s, targetSpacecraft, -s * d, rotationAxis);
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> FieldVector3D<T> getNormal(final FieldSpacecraftState<T> state) {
// compute orientation for best pointing
final FieldVector3D<T> targetInert = target.getPosition(state.getDate(), state.getFrame()).
subtract(state.getPosition()).normalize();
final FieldVector3D<T> targetSpacecraft = state.getAttitude().getRotation().applyTo(targetInert);
final T d = FieldVector3D.dotProduct(targetSpacecraft, rotationAxis);
final T f = d.multiply(d).subtract(1).negate();
if (f.getReal() < Precision.EPSILON) {
// extremely rare case: the target is along panel rotation axis
// (there will not be much output power if it is a solar array…)
// we set up an arbitrary normal
return new FieldVector3D<>(f.getField(), rotationAxis.orthogonal());
}
final T s = f.sqrt().reciprocal();
return new FieldVector3D<>(s, targetSpacecraft,
s.multiply(d).negate(), new FieldVector3D<>(state.getDate().getField(), rotationAxis));
}
}