GeoMagneticElements.java
/* Copyright 2011-2012 Space Applications Services
* Licensed to CS Communication & Systèmes (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.models.earth;
import java.io.Serializable;
import java.text.DecimalFormat;
import java.text.NumberFormat;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.util.FastMath;
import org.orekit.utils.units.UnitsConverter;
/** Contains the elements to represent a magnetic field at a single point.
* @author Thomas Neidhart
*/
public class GeoMagneticElements implements Serializable {
/** Serializable UID. */
private static final long serialVersionUID = 1881493738280586855L;
/** The magnetic field vector (East=X, North=Y, Nadir=Z). */
private Vector3D b;
/** The magnetic inclination in radians. */
private double inclination;
/** The magnetic declination in radians. */
private double declination;
/** The magnetic total intensity, in Teslas. */
private double totalIntensity;
/** The magnetic horizontal intensity, in Teslas. */
private double horizontalIntensity;
/** Construct a new element with the given field vector. The other elements
* of the magnetic field are calculated from the field vector.
* @param b the magnetic field vector
*/
public GeoMagneticElements(final Vector3D b) {
this.b = new Vector3D(UnitsConverter.NANO_TESLAS_TO_TESLAS.getFrom().getScale(), b);
final double intensityNanoTesla = FastMath.hypot(b.getX(), b.getY());
horizontalIntensity = UnitsConverter.NANO_TESLAS_TO_TESLAS.convert(intensityNanoTesla);
totalIntensity = UnitsConverter.NANO_TESLAS_TO_TESLAS.convert(b.getNorm());
declination = FastMath.atan2(b.getY(), b.getX());
inclination = FastMath.atan2(b.getZ(), intensityNanoTesla);
}
/** Returns the magnetic field vector in Tesla.
* @return the magnetic field vector in Tesla
*/
public Vector3D getFieldVector() {
return b;
}
/** Returns the inclination of the magnetic field in radians.
* @return the inclination (dip) in radians
*/
public double getInclination() {
return inclination;
}
/** Returns the declination of the magnetic field in radians.
* @return the declination (dec) in radians
*/
public double getDeclination() {
return declination;
}
/** Returns the total intensity of the magnetic field (= norm of the field vector).
* @return the total intensity in Tesla
*/
public double getTotalIntensity() {
return totalIntensity;
}
/** Returns the horizontal intensity of the magnetic field (= norm of the
* vector in the plane spanned by the x/y components of the field vector).
* @return the horizontal intensity in Tesla
*/
public double getHorizontalIntensity() {
return horizontalIntensity;
}
@Override
public String toString() {
final NumberFormat f = NumberFormat.getInstance();
final DecimalFormat d = new DecimalFormat("0.######E0");
final StringBuilder sb = new StringBuilder();
sb.append("MagneticField[");
sb.append("B=");
sb.append(b.toString(d));
sb.append(",H=");
sb.append(d.format(getHorizontalIntensity()));
sb.append(",F=");
sb.append(d.format(getTotalIntensity()));
sb.append(",I=");
sb.append(f.format(getInclination()));
sb.append(",D=");
sb.append(f.format(getDeclination()));
sb.append("]");
return sb.toString();
}
}