FieldAbsoluteDate.java
/* Copyright 2002-2024 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.time;
import java.time.Instant;
import java.time.LocalDateTime;
import java.time.ZoneOffset;
import java.time.format.DateTimeFormatter;
import java.util.Date;
import java.util.TimeZone;
import java.util.concurrent.TimeUnit;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.Field;
import org.hipparchus.FieldElement;
import org.hipparchus.analysis.differentiation.Derivative;
import org.hipparchus.complex.Complex;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathUtils;
import org.hipparchus.util.MathUtils.FieldSumAndResidual;
import org.hipparchus.util.MathUtils.SumAndResidual;
import org.orekit.annotation.DefaultDataContext;
import org.orekit.data.DataContext;
import org.orekit.utils.Constants;
/** This class represents a specific instant in time.
* <p>Instances of this class are considered to be absolute in the sense
* that each one represent the occurrence of some event and can be compared
* to other instances or located in <em>any</em> {@link TimeScale time scale}. In
* other words the different locations of an event with respect to two different
* time scales (say {@link TAIScale TAI} and {@link UTCScale UTC} for example) are
* simply different perspective related to a single object. Only one
* <code>FieldAbsoluteDate<T></code> instance is needed, both representations being available
* from this single instance by specifying the time scales as parameter when calling
* the ad-hoc methods.</p>
*
* <p>Since an instance is not bound to a specific time-scale, all methods related
* to the location of the date within some time scale require to provide the time
* scale as an argument. It is therefore possible to define a date in one time scale
* and to use it in another one. An example of such use is to read a date from a file
* in UTC and write it in another file in TAI. This can be done as follows:</p>
* <pre>
* DateTimeComponents utcComponents = readNextDate();
* FieldAbsoluteDate<T> date = new FieldAbsoluteDate<>(utcComponents, TimeScalesFactory.getUTC());
* writeNextDate(date.getComponents(TimeScalesFactory.getTAI()));
* </pre>
*
* <p>Two complementary views are available:</p>
* <ul>
* <li><p>location view (mainly for input/output or conversions)</p>
* <p>locations represent the coordinate of one event with respect to a
* {@link TimeScale time scale}. The related methods are {@link
* #FieldAbsoluteDate(Field, DateComponents, TimeComponents, TimeScale)}, {@link
* #FieldAbsoluteDate(Field, int, int, int, int, int, double, TimeScale)}, {@link
* #FieldAbsoluteDate(Field, int, int, int, TimeScale)}, {@link #FieldAbsoluteDate(Field,
* Date, TimeScale)}, {@link #createGPSDate(int, CalculusFieldElement)}, {@link
* #parseCCSDSCalendarSegmentedTimeCode(byte, byte[])}, {@link #toDate(TimeScale)},
* {@link #toString(TimeScale) toString(timeScale)}, {@link #toString()},
* and {@link #timeScalesOffset}.</p>
* </li>
* <li><p>offset view (mainly for physical computation)</p>
* <p>offsets represent either the flow of time between two events
* (two instances of the class) or durations. They are counted in seconds,
* are continuous and could be measured using only a virtually perfect stopwatch.
* The related methods are {@link #FieldAbsoluteDate(FieldAbsoluteDate, double)},
* {@link #parseCCSDSUnsegmentedTimeCode(Field, byte, byte, byte[], FieldAbsoluteDate)},
* {@link #parseCCSDSDaySegmentedTimeCode(Field, byte, byte[], DateComponents)},
* {@link #durationFrom(FieldAbsoluteDate)}, {@link #compareTo(FieldAbsoluteDate)}, {@link #equals(Object)}
* and {@link #hashCode()}.</p>
* </li>
* </ul>
* <p>
* A few reference epochs which are commonly used in space systems have been defined. These
* epochs can be used as the basis for offset computation. The supported epochs are:
* {@link #getJulianEpoch(Field)}, {@link #getModifiedJulianEpoch(Field)}, {@link #getFiftiesEpoch(Field)},
* {@link #getCCSDSEpoch(Field)}, {@link #getGalileoEpoch(Field)}, {@link #getGPSEpoch(Field)},
* {@link #getJ2000Epoch(Field)}, {@link #getJavaEpoch(Field)}. There are also two factory methods
* {@link #createJulianEpoch(CalculusFieldElement)} and {@link #createBesselianEpoch(CalculusFieldElement)}
* that can be used to compute other reference epochs like J1900.0 or B1950.0.
* In addition to these reference epochs, two other constants are defined for convenience:
* {@link #getPastInfinity(Field)} and {@link #getFutureInfinity(Field)}, which can be used either
* as dummy dates when a date is not yet initialized, or for initialization of loops searching for
* a min or max date.
* </p>
* <p>
* Instances of the <code>FieldAbsoluteDate<T></code> class are guaranteed to be immutable.
* </p>
* @author Luc Maisonobe
* @see TimeScale
* @see TimeStamped
* @see ChronologicalComparator
* @param <T> type of the field elements
*/
public class FieldAbsoluteDate<T extends CalculusFieldElement<T>>
implements FieldTimeStamped<T>, FieldTimeShiftable<FieldAbsoluteDate<T>, T>, Comparable<FieldAbsoluteDate<T>> {
/** Reference epoch in seconds from 2000-01-01T12:00:00 TAI.
* <p>Beware, it is not {@link #getJ2000Epoch(Field)} since it is in TAI and not in TT.</p> */
private final long epoch;
/** Offset from the reference epoch in seconds. */
private final T offset;
/** Field used by default.*/
private final Field<T> field;
/** Build an instance from an AbsoluteDate.
* @param field used by default
* @param date AbsoluteDate to instantiate as a FieldAbsoluteDate
*/
public FieldAbsoluteDate(final Field<T> field, final AbsoluteDate date) {
this.field = field;
this.epoch = date.getEpoch();
this.offset = field.getZero().add(date.getOffset());
}
/** Create an instance with a default value ({@link #getJ2000Epoch(Field)}).
*
* <p>This method uses the {@link DataContext#getDefault() default data context}.
*
* @param field field used by default
* @see #FieldAbsoluteDate(Field, AbsoluteDate)
*/
@DefaultDataContext
public FieldAbsoluteDate(final Field<T> field) {
final FieldAbsoluteDate<T> j2000 = getJ2000Epoch(field);
this.field = j2000.field;
this.epoch = j2000.epoch;
this.offset = j2000.offset;
}
/** Build an instance from an elapsed duration since to another instant.
* <p>It is important to note that the elapsed duration is <em>not</em>
* the difference between two readings on a time scale. As an example,
* the duration between the two instants leading to the readings
* 2005-12-31T23:59:59 and 2006-01-01T00:00:00 in the {@link UTCScale UTC}
* time scale is <em>not</em> 1 second, but a stop watch would have measured
* an elapsed duration of 2 seconds between these two instances because a leap
* second was introduced at the end of 2005 in this time scale.</p>
* <p>This constructor is the reverse of the {@link #durationFrom(FieldAbsoluteDate)}
* method.</p>
* @param since start instant of the measured duration
* @param elapsedDuration physically elapsed duration from the <code>since</code>
* instant, as measured in a regular time scale
* @see #durationFrom(FieldAbsoluteDate)
*/
public FieldAbsoluteDate(final FieldAbsoluteDate<T> since, final T elapsedDuration) {
this.field = since.field;
// Use 2Sum for high precision.
final FieldSumAndResidual<T> sumAndResidual = MathUtils.twoSum(since.offset, elapsedDuration);
if (Double.isInfinite(sumAndResidual.getSum().getReal())) {
offset = sumAndResidual.getSum();
epoch = (sumAndResidual.getSum().getReal() < 0) ? Long.MIN_VALUE : Long.MAX_VALUE;
} else {
final long dl = (long) FastMath.floor(sumAndResidual.getSum().getReal());
final T regularOffset = sumAndResidual.getSum().subtract(dl).add(sumAndResidual.getResidual());
if (regularOffset.getReal() >= 0) {
// regular case, the offset is between 0.0 and 1.0
offset = regularOffset;
epoch = since.epoch + dl;
} else {
// very rare case, the offset is just before a whole second
// we will loose some bits of accuracy when adding 1 second
// but this will ensure the offset remains in the [0.0; 1.0] interval
offset = regularOffset.add(1.0);
epoch = since.epoch + dl - 1;
}
}
}
/** Build an instance from a location (parsed from a string) in a {@link TimeScale time scale}.
* <p>
* The supported formats for location are mainly the ones defined in ISO-8601 standard,
* the exact subset is explained in {@link DateTimeComponents#parseDateTime(String)},
* {@link DateComponents#parseDate(String)} and {@link TimeComponents#parseTime(String)}.
* </p>
* <p>
* As CCSDS ASCII calendar segmented time code is a trimmed down version of ISO-8601,
* it is also supported by this constructor.
* </p>
* @param field field utilized by default
* @param location location in the time scale, must be in a supported format
* @param timeScale time scale
* @exception IllegalArgumentException if location string is not in a supported format
*/
public FieldAbsoluteDate(final Field<T> field, final String location, final TimeScale timeScale) {
this(field, DateTimeComponents.parseDateTime(location), timeScale);
}
/** Build an instance from a location in a {@link TimeScale time scale}.
* @param field field utilized by default
* @param location location in the time scale
* @param timeScale time scale
*/
public FieldAbsoluteDate(final Field<T> field, final DateTimeComponents location, final TimeScale timeScale) {
this(field, location.getDate(), location.getTime(), timeScale);
}
/** Build an instance from a location in a {@link TimeScale time scale}.
* @param field field utilized by default
* @param date date location in the time scale
* @param time time location in the time scale
* @param timeScale time scale
*/
public FieldAbsoluteDate(final Field<T> field, final DateComponents date, final TimeComponents time,
final TimeScale timeScale) {
final double seconds = time.getSecond();
final double tsOffset = timeScale.offsetToTAI(date, time);
// Use 2Sum for high precision.
final SumAndResidual sumAndResidual = MathUtils.twoSum(seconds, tsOffset);
final long dl = (long) FastMath.floor(sumAndResidual.getSum());
final T regularOffset = field.getZero().add((sumAndResidual.getSum() - dl) + sumAndResidual.getResidual());
if (regularOffset.getReal() >= 0) {
// regular case, the offset is between 0.0 and 1.0
offset = regularOffset;
epoch = 60L * ((date.getJ2000Day() * 24L + time.getHour()) * 60L +
time.getMinute() - time.getMinutesFromUTC() - 720L) + dl;
} else {
// very rare case, the offset is just before a whole second
// we will loose some bits of accuracy when adding 1 second
// but this will ensure the offset remains in the [0.0; 1.0] interval
offset = regularOffset.add(1.0);
epoch = 60L * ((date.getJ2000Day() * 24L + time.getHour()) * 60L +
time.getMinute() - time.getMinutesFromUTC() - 720L) + dl - 1;
}
this.field = field;
}
/** Build an instance from a location in a {@link TimeScale time scale}.
* @param field field utilized by default
* @param year year number (may be 0 or negative for BC years)
* @param month month number from 1 to 12
* @param day day number from 1 to 31
* @param hour hour number from 0 to 23
* @param minute minute number from 0 to 59
* @param second second number from 0.0 to 60.0 (excluded)
* @param timeScale time scale
* @exception IllegalArgumentException if inconsistent arguments
* are given (parameters out of range)
*/
public FieldAbsoluteDate(final Field<T> field, final int year, final int month, final int day,
final int hour, final int minute, final double second,
final TimeScale timeScale) throws IllegalArgumentException {
this(field, new DateComponents(year, month, day), new TimeComponents(hour, minute, second), timeScale);
}
/** Build an instance from a location in a {@link TimeScale time scale}.
* @param field field utilized by default
* @param year year number (may be 0 or negative for BC years)
* @param month month enumerate
* @param day day number from 1 to 31
* @param hour hour number from 0 to 23
* @param minute minute number from 0 to 59
* @param second second number from 0.0 to 60.0 (excluded)
* @param timeScale time scale
* @exception IllegalArgumentException if inconsistent arguments
* are given (parameters out of range)
*/
public FieldAbsoluteDate(final Field<T> field, final int year, final Month month, final int day,
final int hour, final int minute, final double second,
final TimeScale timeScale) throws IllegalArgumentException {
this(field, new DateComponents(year, month, day), new TimeComponents(hour, minute, second), timeScale);
}
/** Build an instance from a location in a {@link TimeScale time scale}.
* <p>The hour is set to 00:00:00.000.</p>
* @param field field utilized by default
* @param date date location in the time scale
* @param timeScale time scale
* @exception IllegalArgumentException if inconsistent arguments
* are given (parameters out of range)
*/
public FieldAbsoluteDate(final Field<T> field, final DateComponents date, final TimeScale timeScale)
throws IllegalArgumentException {
this(field, date, TimeComponents.H00, timeScale);
}
/** Build an instance from a location in a {@link TimeScale time scale}.
* <p>The hour is set to 00:00:00.000.</p>
* @param field field utilized by default
* @param year year number (may be 0 or negative for BC years)
* @param month month number from 1 to 12
* @param day day number from 1 to 31
* @param timeScale time scale
* @exception IllegalArgumentException if inconsistent arguments
* are given (parameters out of range)
*/
public FieldAbsoluteDate(final Field<T> field, final int year, final int month, final int day,
final TimeScale timeScale) throws IllegalArgumentException {
this(field, new DateComponents(year, month, day), TimeComponents.H00, timeScale);
}
/** Build an instance from a location in a {@link TimeScale time scale}.
* <p>The hour is set to 00:00:00.000.</p>
* @param field field utilized by default
* @param year year number (may be 0 or negative for BC years)
* @param month month enumerate
* @param day day number from 1 to 31
* @param timeScale time scale
* @exception IllegalArgumentException if inconsistent arguments
* are given (parameters out of range)
*/
public FieldAbsoluteDate(final Field<T> field, final int year, final Month month, final int day,
final TimeScale timeScale) throws IllegalArgumentException {
this(field, new DateComponents(year, month, day), TimeComponents.H00, timeScale);
}
/** Build an instance from a location in a {@link TimeScale time scale}.
* @param field field utilized as default
* @param location location in the time scale
* @param timeScale time scale
*/
public FieldAbsoluteDate(final Field<T> field, final Date location, final TimeScale timeScale) {
this(field, new DateComponents(DateComponents.JAVA_EPOCH,
(int) (location.getTime() / 86400000L)),
new TimeComponents(0.001 * (location.getTime() % 86400000L)),
timeScale);
}
/** Build an instance from an {@link Instant instant} in a {@link TimeScale time scale}.
* @param field field utilized as default
* @param instant instant in the time scale
* @param timeScale time scale
* @since 12.0
*/
public FieldAbsoluteDate(final Field<T> field, final Instant instant, final TimeScale timeScale) {
this(field, new DateComponents(DateComponents.JAVA_EPOCH,
(int) (instant.getEpochSecond() / 86400L)),
instantToTimeComponents(instant),
timeScale);
}
/** Build an instance from an {@link Instant instant} in utc time scale.
* @param field field utilized as default
* @param instant instant in the utc timescale
* @since 12.1
*/
@DefaultDataContext
public FieldAbsoluteDate(final Field<T> field, final Instant instant) {
this(field, instant, TimeScalesFactory.getUTC());
}
/** Build an instance from an {@link Instant instant} in the {@link UTCScale time scale}.
* @param field field utilized as default
* @param instant instant in the time scale
* @param utcScale utc time scale
* @since 12.1
*/
public FieldAbsoluteDate(final Field<T> field, final Instant instant, final UTCScale utcScale) {
this(field, new DateComponents(DateComponents.JAVA_EPOCH,
(int) (instant.getEpochSecond() / 86400l)),
instantToTimeComponents(instant),
utcScale);
}
/** Build an instance from an elapsed duration since to another instant.
* <p>It is important to note that the elapsed duration is <em>not</em>
* the difference between two readings on a time scale.
* @param since start instant of the measured duration
* @param elapsedDuration physically elapsed duration from the <code>since</code>
* instant, as measured in a regular time scale
*/
public FieldAbsoluteDate(final FieldAbsoluteDate<T> since, final double elapsedDuration) {
this(since.epoch, elapsedDuration, since.offset);
}
/** Build an instance from an elapsed duration since to another instant.
* <p>It is important to note that the elapsed duration is <em>not</em>
* the difference between two readings on a time scale.
* @param since start instant of the measured duration
* @param elapsedDuration physically elapsed duration from the <code>since</code>
* instant, as measured in a regular time scale
* @param timeUnit {@link TimeUnit} of the elapsed duration
* @since 12.1
*/
public FieldAbsoluteDate(final FieldAbsoluteDate<T> since, final long elapsedDuration, final TimeUnit timeUnit) {
this(since.epoch, elapsedDuration, timeUnit, since.offset);
}
/** Build an instance from an elapsed duration since to another instant.
* <p>It is important to note that the elapsed duration is <em>not</em>
* the difference between two readings on a time scale.
* @param since start instant of the measured duration
* @param elapsedDuration physically elapsed duration from the <code>since</code>
* instant, as measured in a regular time scale
*/
public FieldAbsoluteDate(final AbsoluteDate since, final T elapsedDuration) {
this(since.getEpoch(), since.getOffset(), elapsedDuration);
}
/** Build an instance from an elapsed duration since to another instant.
* <p>It is important to note that the elapsed duration is <em>not</em>
* the difference between two readings on a time scale.
* @param since start instant of the measured duration
* @param elapsedDuration physically elapsed duration from the <code>since</code>
* instant, as measured in a regular time scale
* @param timeUnit {@link TimeUnit} of the elapsed duration
* @param field field utilized by default
* @since 12.1
*/
public FieldAbsoluteDate(final AbsoluteDate since, final long elapsedDuration, final TimeUnit timeUnit, final Field<T> field) {
this.field = field;
final long elapsedDurationNanoseconds = TimeUnit.NANOSECONDS.convert(elapsedDuration, timeUnit);
final long deltaEpoch = elapsedDurationNanoseconds / TimeUnit.SECONDS.toNanos(1);
final double deltaOffset = (elapsedDurationNanoseconds - (deltaEpoch * TimeUnit.SECONDS.toNanos(1))) / (double) TimeUnit.SECONDS.toNanos(1);
final T newOffset = field.getZero().add(since.getOffset()).add(deltaOffset);
if (newOffset.getReal() >= 1.0) {
// newOffset is in [1.0, 2.0]
this.epoch = since.getEpoch() + deltaEpoch + 1L;
this.offset = newOffset.subtract(1.0);
} else if (newOffset.getReal() < 0) {
this.epoch = since.getEpoch() + deltaEpoch - 1L;
this.offset = newOffset.add(1.0);
} else {
this.epoch = since.getEpoch() + deltaEpoch;
this.offset = newOffset;
}
}
/** Build an instance from an apparent clock offset with respect to another
* instant <em>in the perspective of a specific {@link TimeScale time scale}</em>.
* <p>It is important to note that the apparent clock offset <em>is</em> the
* difference between two readings on a time scale and <em>not</em> an elapsed
* duration. As an example, the apparent clock offset between the two instants
* leading to the readings 2005-12-31T23:59:59 and 2006-01-01T00:00:00 in the
* {@link UTCScale UTC} time scale is 1 second, but the elapsed duration is 2
* seconds because a leap second has been introduced at the end of 2005 in this
* time scale.</p>
* <p>This constructor is the reverse of the {@link #offsetFrom(FieldAbsoluteDate,
* TimeScale)} method.</p>
* @param reference reference instant
* @param apparentOffset apparent clock offset from the reference instant
* (difference between two readings in the specified time scale)
* @param timeScale time scale with respect to which the offset is defined
* @see #offsetFrom(FieldAbsoluteDate, TimeScale)
*/
public FieldAbsoluteDate(final FieldAbsoluteDate<T> reference, final double apparentOffset, final TimeScale timeScale) {
this(reference.field, new DateTimeComponents(reference.getComponents(timeScale), apparentOffset),
timeScale);
}
/** Build an instance from mixed double and field raw components.
* @param epoch reference epoch in seconds from 2000-01-01T12:00:00 TAI
* @param tA double part of offset since reference epoch
* @param tB field part of offset since reference epoch
* @since 9.3
*/
private FieldAbsoluteDate(final long epoch, final double tA, final T tB) {
this.field = tB.getField();
// Use 2Sum for high precision.
final FieldSumAndResidual<T> sumAndResidual = MathUtils.twoSum(field.getZero().add(tA), tB);
if (Double.isInfinite(sumAndResidual.getSum().getReal())) {
this.offset = sumAndResidual.getSum();
this.epoch = (sumAndResidual.getSum().getReal() < 0) ? Long.MIN_VALUE : Long.MAX_VALUE;
} else {
final long dl = (long) FastMath.floor(sumAndResidual.getSum().getReal());
final T regularOffset = sumAndResidual.getSum().subtract(dl).add(sumAndResidual.getResidual());
if (regularOffset.getReal() >= 0) {
// regular case, the offset is between 0.0 and 1.0
this.offset = regularOffset;
this.epoch = epoch + dl;
} else {
// very rare case, the offset is just before a whole second
// we will lose some bits of accuracy when adding 1 second
// but this will ensure the offset remains in the [0.0; 1.0) interval
this.offset = regularOffset.add(1.0);
this.epoch = epoch + dl - 1;
}
}
}
/** Build an instance from mixed double and field raw components.
* @param epoch reference epoch in seconds from 2000-01-01T12:00:00 TAI
* @param tA numeric part of offset since reference epoch
* @param tATimeUnit {@link TimeUnit} for tA
* @param tB field part of offset since reference epoch
* @since 12.1
*/
private FieldAbsoluteDate(final long epoch, final long tA, final TimeUnit tATimeUnit, final T tB) {
this.field = tB.getField();
final long elapsedDurationNanoseconds = TimeUnit.NANOSECONDS.convert(tA, tATimeUnit);
final long deltaEpoch = elapsedDurationNanoseconds / TimeUnit.SECONDS.toNanos(1);
final double deltaOffset = (elapsedDurationNanoseconds - (deltaEpoch * TimeUnit.SECONDS.toNanos(1))) / (double) TimeUnit.SECONDS.toNanos(1);
final T newOffset = field.getZero().add(tB).add(deltaOffset);
if (newOffset.getReal() >= 1.0) {
// newOffset is in [1.0, 2.0]
this.epoch = epoch + deltaEpoch + 1L;
offset = newOffset.subtract(1.0);
} else if (newOffset.getReal() < 0) {
this.epoch = epoch + deltaEpoch - 1L;
offset = newOffset.add(1.0);
} else {
this.epoch = epoch + deltaEpoch;
offset = newOffset;
}
}
/** Extract time components from an instant within the day.
* @param instant instant to extract the number of seconds within the day
* @return time components
*/
private static TimeComponents instantToTimeComponents(final Instant instant) {
final int secInDay = (int) (instant.getEpochSecond() % 86400L);
return new TimeComponents(secInDay, 1.0e-9 * instant.getNano());
}
/** Build an instance from a CCSDS Unsegmented Time Code (CUC).
* <p>
* CCSDS Unsegmented Time Code is defined in the blue book:
* CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010
* </p>
* <p>
* If the date to be parsed is formatted using version 3 of the standard
* (CCSDS 301.0-B-3 published in 2002) or if the extension of the preamble
* field introduced in version 4 of the standard is not used, then the
* {@code preambleField2} parameter can be set to 0.
* </p>
*
* <p>This method uses the {@link DataContext#getDefault() default data context} if
* the CCSDS epoch is used.
*
* @param field field for the components
* @param preambleField1 first byte of the field specifying the format, often
* not transmitted in data interfaces, as it is constant for a given data interface
* @param preambleField2 second byte of the field specifying the format
* (added in revision 4 of the CCSDS standard in 2010), often not transmitted in data
* interfaces, as it is constant for a given data interface (value ignored if presence
* not signaled in {@code preambleField1})
* @param timeField byte array containing the time code
* @param agencyDefinedEpoch reference epoch, ignored if the preamble field
* specifies the {@link #getCCSDSEpoch(Field) CCSDS reference epoch} is used (and hence
* may be null in this case)
* @return an instance corresponding to the specified date
* @param <T> the type of the field elements
* @see #parseCCSDSUnsegmentedTimeCode(Field, byte, byte, byte[], FieldAbsoluteDate,
* FieldAbsoluteDate)
*/
@DefaultDataContext
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> parseCCSDSUnsegmentedTimeCode(final Field<T> field,
final byte preambleField1,
final byte preambleField2,
final byte[] timeField,
final FieldAbsoluteDate<T> agencyDefinedEpoch) {
return parseCCSDSUnsegmentedTimeCode(field, preambleField1, preambleField2,
timeField, agencyDefinedEpoch,
new FieldAbsoluteDate<>(
field,
DataContext.getDefault().getTimeScales().getCcsdsEpoch()));
}
/**
* Build an instance from a CCSDS Unsegmented Time Code (CUC).
* <p>
* CCSDS Unsegmented Time Code is defined in the blue book: CCSDS Time Code Format
* (CCSDS 301.0-B-4) published in November 2010
* </p>
* <p>
* If the date to be parsed is formatted using version 3 of the standard (CCSDS
* 301.0-B-3 published in 2002) or if the extension of the preamble field introduced
* in version 4 of the standard is not used, then the {@code preambleField2} parameter
* can be set to 0.
* </p>
*
* @param <T> the type of the field elements
* @param field field for the components
* @param preambleField1 first byte of the field specifying the format, often not
* transmitted in data interfaces, as it is constant for a
* given data interface
* @param preambleField2 second byte of the field specifying the format (added in
* revision 4 of the CCSDS standard in 2010), often not
* transmitted in data interfaces, as it is constant for a
* given data interface (value ignored if presence not
* signaled in {@code preambleField1})
* @param timeField byte array containing the time code
* @param agencyDefinedEpoch reference epoch, ignored if the preamble field specifies
* the CCSDS reference epoch is used (and hence may be null
* in this case)
* @param ccsdsEpoch reference epoch, ignored if the preamble field specifies
* the agency epoch is used.
* @return an instance corresponding to the specified date
* @since 10.1
*/
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> parseCCSDSUnsegmentedTimeCode(final Field<T> field,
final byte preambleField1,
final byte preambleField2,
final byte[] timeField,
final FieldAbsoluteDate<T> agencyDefinedEpoch,
final FieldAbsoluteDate<T> ccsdsEpoch) {
final CcsdsUnsegmentedTimeCode<FieldAbsoluteDate<T>> timeCode =
new CcsdsUnsegmentedTimeCode<>(preambleField1, preambleField2, timeField,
agencyDefinedEpoch, ccsdsEpoch);
return new FieldAbsoluteDate<>(timeCode.getEpoch(), timeCode.getSeconds()).
shiftedBy(timeCode.getSubSecond());
}
/** Build an instance from a CCSDS Day Segmented Time Code (CDS).
* <p>
* CCSDS Day Segmented Time Code is defined in the blue book:
* CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010
* </p>
*
* <p>This method uses the {@link DataContext#getDefault() default data context}.
*
* @param field field for the components
* @param preambleField field specifying the format, often not transmitted in
* data interfaces, as it is constant for a given data interface
* @param timeField byte array containing the time code
* @param agencyDefinedEpoch reference epoch, ignored if the preamble field
* specifies the {@link #getCCSDSEpoch(Field) CCSDS reference epoch} is used (and hence
* may be null in this case)
* @return an instance corresponding to the specified date
* @param <T> the type of the field elements
* @see #parseCCSDSDaySegmentedTimeCode(Field, byte, byte[], DateComponents,
* TimeScale)
*/
@DefaultDataContext
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> parseCCSDSDaySegmentedTimeCode(final Field<T> field,
final byte preambleField, final byte[] timeField,
final DateComponents agencyDefinedEpoch) {
return parseCCSDSDaySegmentedTimeCode(field, preambleField, timeField,
agencyDefinedEpoch, DataContext.getDefault().getTimeScales().getUTC());
}
/**
* Build an instance from a CCSDS Day Segmented Time Code (CDS).
* <p>
* CCSDS Day Segmented Time Code is defined in the blue book: CCSDS Time Code Format
* (CCSDS 301.0-B-4) published in November 2010
* </p>
*
* @param <T> the type of the field elements
* @param field field for the components
* @param preambleField field specifying the format, often not transmitted in
* data interfaces, as it is constant for a given data
* interface
* @param timeField byte array containing the time code
* @param agencyDefinedEpoch reference epoch, ignored if the preamble field specifies
* the {@link #getCCSDSEpoch(Field) CCSDS reference epoch}
* is used (and hence may be null in this case)
* @param utc time scale used to compute date and time components.
* @return an instance corresponding to the specified date
* @since 10.1
*/
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> parseCCSDSDaySegmentedTimeCode(final Field<T> field,
final byte preambleField,
final byte[] timeField,
final DateComponents agencyDefinedEpoch,
final TimeScale utc) {
final CcsdsSegmentedTimeCode timeCode = new CcsdsSegmentedTimeCode(preambleField, timeField,
agencyDefinedEpoch);
return new FieldAbsoluteDate<>(field, timeCode.getDate(), timeCode.getTime(), utc).
shiftedBy(timeCode.getSubSecond());
}
/** Build an instance from a CCSDS Calendar Segmented Time Code (CCS).
* <p>
* CCSDS Calendar Segmented Time Code is defined in the blue book:
* CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010
* </p>
*
* <p>This method uses the {@link DataContext#getDefault() default data context}.
*
* @param preambleField field specifying the format, often not transmitted in
* data interfaces, as it is constant for a given data interface
* @param timeField byte array containing the time code
* @return an instance corresponding to the specified date
* @see #parseCCSDSCalendarSegmentedTimeCode(byte, byte[], TimeScale)
*/
@DefaultDataContext
public FieldAbsoluteDate<T> parseCCSDSCalendarSegmentedTimeCode(final byte preambleField, final byte[] timeField) {
return parseCCSDSCalendarSegmentedTimeCode(preambleField, timeField,
DataContext.getDefault().getTimeScales().getUTC());
}
/**
* Build an instance from a CCSDS Calendar Segmented Time Code (CCS).
* <p>
* CCSDS Calendar Segmented Time Code is defined in the blue book: CCSDS Time Code
* Format (CCSDS 301.0-B-4) published in November 2010
* </p>
*
* @param preambleField field specifying the format, often not transmitted in data
* interfaces, as it is constant for a given data interface
* @param timeField byte array containing the time code
* @param utc time scale used to compute date and time components.
* @return an instance corresponding to the specified date
* @since 10.1
*/
public FieldAbsoluteDate<T> parseCCSDSCalendarSegmentedTimeCode(final byte preambleField,
final byte[] timeField,
final TimeScale utc) {
final CcsdsSegmentedTimeCode timeCode = new CcsdsSegmentedTimeCode(preambleField, timeField);
return new FieldAbsoluteDate<>(field, timeCode.getDate(), timeCode.getTime(), utc).
shiftedBy(timeCode.getSubSecond());
}
/** Build an instance corresponding to a Julian Day date.
* @param jd Julian day
* @param secondsSinceNoon seconds in the Julian day
* (BEWARE, Julian days start at noon, so 0.0 is noon)
* @param timeScale time scale in which the seconds in day are defined
* @return a new instant
* @param <T> the type of the field elements
*/
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> createJDDate(final int jd, final T secondsSinceNoon,
final TimeScale timeScale) {
return new FieldAbsoluteDate<>(secondsSinceNoon.getField(), new DateComponents(DateComponents.JULIAN_EPOCH, jd),
TimeComponents.H12, timeScale).shiftedBy(secondsSinceNoon);
}
/** Build an instance corresponding to a Julian Day date.
* <p>
* This function should be preferred to {@link #createJDDate(int, CalculusFieldElement, TimeScale)} when the target time scale
* has a non-constant offset with respect to TAI.
* <p>
* The idea is to introduce a pivot time scale that is close to the target time scale but has a constant bias with TAI.
* <p>
* For example, to get a date from an MJD in TDB time scale, it's advised to use the TT time scale
* as a pivot scale. TT is very close to TDB and has constant offset to TAI.
* </p>
* @param jd Julian day
* @param secondsSinceNoon seconds in the Julian day
* (BEWARE, Julian days start at noon, so 0.0 is noon)
* @param timeScale time scale in which the seconds in day are defined
* @param pivotTimeScale pivot timescale used as intermediate timescale
* @return a new instant
* @param <T> the type of the field elements
*/
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> createJDDate(final int jd, final T secondsSinceNoon,
final TimeScale timeScale,
final TimeScale pivotTimeScale) {
// Get the date in pivot timescale
final FieldAbsoluteDate<T> dateInPivotTimeScale = createJDDate(jd, secondsSinceNoon, pivotTimeScale);
// Compare offsets to TAI of the two time scales
final T offsetFromTAI = timeScale.offsetFromTAI(dateInPivotTimeScale).
subtract(pivotTimeScale.offsetFromTAI(dateInPivotTimeScale));
// Return date in desired timescale
return dateInPivotTimeScale.shiftedBy(offsetFromTAI.multiply(-1.));
}
/** Build an instance corresponding to a Modified Julian Day date.
* @param mjd modified Julian day
* @param secondsInDay seconds in the day
* @param timeScale time scale in which the seconds in day are defined
* @return a new instant
* @param <T> the type of the field elements
*/
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> createMJDDate(final int mjd, final T secondsInDay,
final TimeScale timeScale) {
return new FieldAbsoluteDate<>(secondsInDay.getField(),
new DateComponents(DateComponents.MODIFIED_JULIAN_EPOCH, mjd),
TimeComponents.H00,
timeScale).shiftedBy(secondsInDay);
}
/** Build an instance corresponding to a GPS date.
*
* <p>This method uses the {@link DataContext#getDefault() default data context}.
*
* <p>GPS dates are provided as a week number starting at
* {@link #getGPSEpoch(Field) GPS epoch} and as a number of milliseconds
* since week start.</p>
* @param weekNumber week number since {@link #getGPSEpoch(Field) GPS epoch}
* @param milliInWeek number of milliseconds since week start
* @return a new instant
* @param <T> the type of the field elements
* @see #createGPSDate(int, CalculusFieldElement, TimeScale)
*/
@DefaultDataContext
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> createGPSDate(final int weekNumber, final T milliInWeek) {
return createGPSDate(weekNumber, milliInWeek,
DataContext.getDefault().getTimeScales().getGPS());
}
/**
* Build an instance corresponding to a GPS date.
* <p>GPS dates are provided as a week number starting at
* {@link #getGPSEpoch(Field) GPS epoch} and as a number of milliseconds since week
* start.</p>
*
* @param <T> the type of the field elements
* @param weekNumber week number since {@link #getGPSEpoch(Field) GPS epoch}
* @param milliInWeek number of milliseconds since week start
* @param gps GPS time scale.
* @return a new instant
* @since 10.1
*/
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> createGPSDate(
final int weekNumber,
final T milliInWeek,
final TimeScale gps) {
final int day = (int) FastMath.floor(milliInWeek.getReal() / (1000.0 * Constants.JULIAN_DAY));
final T secondsInDay = milliInWeek.divide(1000.0).subtract(day * Constants.JULIAN_DAY);
return new FieldAbsoluteDate<>(milliInWeek.getField(), new DateComponents(DateComponents.GPS_EPOCH, weekNumber * 7 + day),
TimeComponents.H00, gps).shiftedBy(secondsInDay);
}
/** Build an instance corresponding to a Julian Epoch (JE).
* <p>According to Lieske paper: <a
* href="http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1979A%26A....73..282L&defaultprint=YES&filetype=.pdf.">
* Precession Matrix Based on IAU (1976) System of Astronomical Constants</a>, Astronomy and Astrophysics,
* vol. 73, no. 3, Mar. 1979, p. 282-284, Julian Epoch is related to Julian Ephemeris Date as:
* <pre>JE = 2000.0 + (JED - 2451545.0) / 365.25</pre>
* <p>This method reverts the formula above and computes an {@code FieldAbsoluteDate<T>} from the Julian Epoch.
*
* <p>This method uses the {@link DataContext#getDefault() default data context}.
*
* @param <T> the type of the field elements
* @param julianEpoch Julian epoch, like 2000.0 for defining the classical reference J2000.0
* @return a new instant
* @see #getJ2000Epoch(Field)
* @see #createBesselianEpoch(CalculusFieldElement)
* @see #createJulianEpoch(CalculusFieldElement, TimeScales)
*/
@DefaultDataContext
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> createJulianEpoch(final T julianEpoch) {
return createJulianEpoch(julianEpoch,
DataContext.getDefault().getTimeScales());
}
/**
* Build an instance corresponding to a Julian Epoch (JE).
* <p>According to Lieske paper: <a
* href="http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1979A%26A....73..282L&defaultprint=YES&filetype=.pdf.">
* Precession Matrix Based on IAU (1976) System of Astronomical Constants</a>,
* Astronomy and Astrophysics, vol. 73, no. 3, Mar. 1979, p. 282-284, Julian Epoch is
* related to Julian Ephemeris Date as:
* <pre>JE = 2000.0 + (JED - 2451545.0) / 365.25</pre>
* <p>This method reverts the formula above and computes an {@code
* FieldAbsoluteDate<T>} from the Julian Epoch.
*
* @param <T> the type of the field elements
* @param julianEpoch Julian epoch, like 2000.0 for defining the classical reference
* J2000.0
* @param timeScales used in the computation.
* @return a new instant
* @see #getJ2000Epoch(Field)
* @see #createBesselianEpoch(CalculusFieldElement)
* @see TimeScales#createJulianEpoch(double)
* @since 10.1
*/
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> createJulianEpoch(
final T julianEpoch,
final TimeScales timeScales) {
final Field<T> field = julianEpoch.getField();
return new FieldAbsoluteDate<>(new FieldAbsoluteDate<>(field, timeScales.getJ2000Epoch()),
julianEpoch.subtract(2000.0).multiply(Constants.JULIAN_YEAR));
}
/** Build an instance corresponding to a Besselian Epoch (BE).
* <p>According to Lieske paper: <a
* href="http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1979A%26A....73..282L&defaultprint=YES&filetype=.pdf.">
* Precession Matrix Based on IAU (1976) System of Astronomical Constants</a>, Astronomy and Astrophysics,
* vol. 73, no. 3, Mar. 1979, p. 282-284, Besselian Epoch is related to Julian Ephemeris Date as:</p>
* <pre>
* BE = 1900.0 + (JED - 2415020.31352) / 365.242198781
* </pre>
* <p>
* This method reverts the formula above and computes an {@code FieldAbsoluteDate<T>} from the Besselian Epoch.
* </p>
*
* <p>This method uses the {@link DataContext#getDefault() default data context}.
*
* @param <T> the type of the field elements
* @param besselianEpoch Besselian epoch, like 1950 for defining the classical reference B1950.0
* @return a new instant
* @see #createJulianEpoch(CalculusFieldElement)
* @see #createBesselianEpoch(CalculusFieldElement, TimeScales)
*/
@DefaultDataContext
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> createBesselianEpoch(final T besselianEpoch) {
return createBesselianEpoch(besselianEpoch,
DataContext.getDefault().getTimeScales());
}
/**
* Build an instance corresponding to a Besselian Epoch (BE).
* <p>According to Lieske paper: <a
* href="http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1979A%26A....73..282L&defaultprint=YES&filetype=.pdf.">
* Precession Matrix Based on IAU (1976) System of Astronomical Constants</a>,
* Astronomy and Astrophysics, vol. 73, no. 3, Mar. 1979, p. 282-284, Besselian Epoch
* is related to Julian Ephemeris Date as:</p>
* <pre>
* BE = 1900.0 + (JED - 2415020.31352) / 365.242198781
* </pre>
* <p>
* This method reverts the formula above and computes an {@code FieldAbsoluteDate<T>}
* from the Besselian Epoch.
* </p>
*
* @param <T> the type of the field elements
* @param besselianEpoch Besselian epoch, like 1950 for defining the classical
* reference B1950.0
* @param timeScales used in the computation.
* @return a new instant
* @see #createJulianEpoch(CalculusFieldElement)
* @see TimeScales#createBesselianEpoch(double)
* @since 10.1
*/
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> createBesselianEpoch(
final T besselianEpoch,
final TimeScales timeScales) {
final Field<T> field = besselianEpoch.getField();
return new FieldAbsoluteDate<>(new FieldAbsoluteDate<>(field, timeScales.getJ2000Epoch()),
besselianEpoch.subtract(1900).multiply(Constants.BESSELIAN_YEAR).add(
Constants.JULIAN_DAY * (-36525) + Constants.JULIAN_DAY * 0.31352));
}
/** Reference epoch for julian dates: -4712-01-01T12:00:00 Terrestrial Time.
* <p>Both <code>java.util.Date</code> and {@link DateComponents} classes
* follow the astronomical conventions and consider a year 0 between
* years -1 and +1, hence this reference date lies in year -4712 and not
* in year -4713 as can be seen in other documents or programs that obey
* a different convention (for example the <code>convcal</code> utility).</p>
*
* <p>This method uses the {@link DataContext#getDefault() default data context}.
*
* @param <T> the type of the field elements
* @param field field for the components
* @return the reference epoch for julian dates as a FieldAbsoluteDate
* @see AbsoluteDate#JULIAN_EPOCH
* @see TimeScales#getJulianEpoch()
*/
@DefaultDataContext
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> getJulianEpoch(final Field<T> field) {
return new FieldAbsoluteDate<>(field,
DataContext.getDefault().getTimeScales().getJulianEpoch());
}
/** Reference epoch for modified julian dates: 1858-11-17T00:00:00 Terrestrial Time.
*
* <p>This method uses the {@link DataContext#getDefault() default data context}.
*
* @param <T> the type of the field elements
* @param field field for the components
* @return the reference epoch for modified julian dates as a FieldAbsoluteDate
* @see AbsoluteDate#MODIFIED_JULIAN_EPOCH
* @see TimeScales#getModifiedJulianEpoch()
*/
@DefaultDataContext
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> getModifiedJulianEpoch(final Field<T> field) {
return new FieldAbsoluteDate<>(field,
DataContext.getDefault().getTimeScales().getModifiedJulianEpoch());
}
/** Reference epoch for 1950 dates: 1950-01-01T00:00:00 Terrestrial Time.
*
* <p>This method uses the {@link DataContext#getDefault() default data context}.
*
* @param <T> the type of the field elements
* @param field field for the components
* @return the reference epoch for 1950 dates as a FieldAbsoluteDate
* @see AbsoluteDate#FIFTIES_EPOCH
* @see TimeScales#getFiftiesEpoch()
*/
@DefaultDataContext
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> getFiftiesEpoch(final Field<T> field) {
return new FieldAbsoluteDate<>(field,
DataContext.getDefault().getTimeScales().getFiftiesEpoch());
}
/** Reference epoch for CCSDS Time Code Format (CCSDS 301.0-B-4).
* <p>
* This method uses the {@link DataContext#getDefault() default data context}.
* </p>
* 1958-01-01T00:00:00 International Atomic Time (<em>not</em> UTC).
* @param <T> the type of the field elements
* @param field field for the components
* @return the reference epoch for CCSDS Time Code Format as a FieldAbsoluteDate
* @see AbsoluteDate#CCSDS_EPOCH
* @see TimeScales#getCcsdsEpoch()
*/
@DefaultDataContext
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> getCCSDSEpoch(final Field<T> field) {
return new FieldAbsoluteDate<>(field,
DataContext.getDefault().getTimeScales().getCcsdsEpoch());
}
/** Reference epoch for Galileo System Time: 1999-08-22T00:00:00 UTC.
*
* <p>This method uses the {@link DataContext#getDefault() default data context}.
*
* @param <T> the type of the field elements
* @param field field for the components
* @return the reference epoch for Galileo System Time as a FieldAbsoluteDate
* @see AbsoluteDate#GALILEO_EPOCH
* @see TimeScales#getGalileoEpoch()
*/
@DefaultDataContext
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> getGalileoEpoch(final Field<T> field) {
return new FieldAbsoluteDate<>(field,
DataContext.getDefault().getTimeScales().getGalileoEpoch());
}
/** Reference epoch for GPS weeks: 1980-01-06T00:00:00 GPS time.
*
* <p>This method uses the {@link DataContext#getDefault() default data context}.
*
* @param <T> the type of the field elements
* @param field field for the components
* @return the reference epoch for GPS weeks as a FieldAbsoluteDate
* @see AbsoluteDate#GPS_EPOCH
* @see TimeScales#getGpsEpoch()
*/
@DefaultDataContext
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> getGPSEpoch(final Field<T> field) {
return new FieldAbsoluteDate<>(field,
DataContext.getDefault().getTimeScales().getGpsEpoch());
}
/** J2000.0 Reference epoch: 2000-01-01T12:00:00 Terrestrial Time (<em>not</em> UTC).
*
* <p>This method uses the {@link DataContext#getDefault() default data context}.
*
* @param <T> the type of the field elements
* @param field field for the components
* @return the J2000.0 reference epoch as a FieldAbsoluteDate
* @see #createJulianEpoch(CalculusFieldElement)
* @see AbsoluteDate#J2000_EPOCH
* @see TimeScales#getJ2000Epoch()
*/
@DefaultDataContext
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> getJ2000Epoch(final Field<T> field) {
return new FieldAbsoluteDate<>(field,
DataContext.getDefault().getTimeScales().getJ2000Epoch());
}
/** Java Reference epoch: 1970-01-01T00:00:00 Universal Time Coordinate.
*
* <p>This method uses the {@link DataContext#getDefault() default data context}.
*
* <p>
* Between 1968-02-01 and 1972-01-01, UTC-TAI = 4.213 170 0s + (MJD - 39 126) x 0.002 592s.
* As on 1970-01-01 MJD = 40587, UTC-TAI = 8.000082s
* </p>
* @param <T> the type of the field elements
* @param field field for the components
* @return the Java reference epoch as a FieldAbsoluteDate
* @see AbsoluteDate#JAVA_EPOCH
* @see TimeScales#getJavaEpoch()
*/
@DefaultDataContext
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> getJavaEpoch(final Field<T> field) {
return new FieldAbsoluteDate<>(field,
DataContext.getDefault().getTimeScales().getJavaEpoch());
}
/** Dummy date at infinity in the past direction.
* @param <T> the type of the field elements
* @param field field for the components
* @return a dummy date at infinity in the past direction as a FieldAbsoluteDate
* @see AbsoluteDate#PAST_INFINITY
* @see TimeScales#getPastInfinity()
*/
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> getPastInfinity(final Field<T> field) {
return new FieldAbsoluteDate<>(field, AbsoluteDate.PAST_INFINITY);
}
/** Dummy date at infinity in the future direction.
* @param <T> the type of the field elements
* @param field field for the components
* @return a dummy date at infinity in the future direction as a FieldAbsoluteDate
* @see AbsoluteDate#FUTURE_INFINITY
* @see TimeScales#getFutureInfinity()
*/
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> getFutureInfinity(final Field<T> field) {
return new FieldAbsoluteDate<>(field, AbsoluteDate.FUTURE_INFINITY);
}
/**
* Get an arbitrary date. Useful when a non-null date is needed but its values does
* not matter.
*
* @param <T> the type of the field elements
* @param field field for the components
* @return an arbitrary date.
*/
public static <T extends CalculusFieldElement<T>> FieldAbsoluteDate<T> getArbitraryEpoch(final Field<T> field) {
return new FieldAbsoluteDate<>(field, AbsoluteDate.ARBITRARY_EPOCH);
}
/** Get a time-shifted date.
* <p>
* Calling this method is equivalent to call {@code new FieldAbsoluteDate<>(this, dt)}.
* </p>
* @param dt time shift in seconds
* @return a new date, shifted with respect to instance (which is immutable)
* @see org.orekit.utils.FieldPVCoordinates#shiftedBy(double)
* @see org.orekit.attitudes.FieldAttitude#shiftedBy(double)
* @see org.orekit.orbits.FieldOrbit#shiftedBy(double)
* @see org.orekit.propagation.FieldSpacecraftState#shiftedBy(double)
*/
@Override
public FieldAbsoluteDate<T> shiftedBy(final T dt) {
return new FieldAbsoluteDate<>(this, dt);
}
/** Compute the physically elapsed duration between two instants.
* <p>The returned duration is the number of seconds physically
* elapsed between the two instants, measured in a regular time
* scale with respect to surface of the Earth (i.e either the {@link
* TAIScale TAI scale}, the {@link TTScale TT scale} or the {@link
* GPSScale GPS scale}). It is the only method that gives a
* duration with a physical meaning.</p>
* <p>This method gives the same result (with less computation)
* as calling {@link #offsetFrom(FieldAbsoluteDate, TimeScale)}
* with a second argument set to one of the regular scales cited
* above.</p>
* <p>This method is the reverse of the {@link #FieldAbsoluteDate(FieldAbsoluteDate,
* double)} constructor.</p>
* @param instant instant to subtract from the instance
* @return offset in seconds between the two instants (positive
* if the instance is posterior to the argument)
* @see #offsetFrom(FieldAbsoluteDate, TimeScale)
* @see #FieldAbsoluteDate(FieldAbsoluteDate, double)
*/
public T durationFrom(final FieldAbsoluteDate<T> instant) {
return offset.subtract(instant.offset).add(epoch - instant.epoch);
}
/** Compute the physically elapsed duration between two instants.
* <p>The returned duration is the number of seconds physically
* elapsed between the two instants, measured in a regular time
* scale with respect to surface of the Earth (i.e either the {@link
* TAIScale TAI scale}, the {@link TTScale TT scale} or the {@link
* GPSScale GPS scale}). It is the only method that gives a
* duration with a physical meaning.</p>
* <p>This method gives the same result (with less computation)
* as calling {@link #offsetFrom(FieldAbsoluteDate, TimeScale)}
* with a second argument set to one of the regular scales cited
* above.</p>
* <p>This method is the reverse of the {@link #FieldAbsoluteDate(FieldAbsoluteDate,
* double)} constructor.</p>
* @param instant instant to subtract from the instance
* @param timeUnit {@link TimeUnit} precision for the offset
* @return offset in seconds between the two instants (positive
* if the instance is posterior to the argument)
* @see #offsetFrom(FieldAbsoluteDate, TimeScale)
* @see #FieldAbsoluteDate(FieldAbsoluteDate, double)
*/
public T durationFrom(final FieldAbsoluteDate<T> instant, final TimeUnit timeUnit) {
final long deltaEpoch = timeUnit.convert(epoch - instant.epoch, TimeUnit.SECONDS);
final long multiplier = timeUnit.convert(1, TimeUnit.SECONDS);
final T deltaOffset = offset.getField().getZero().add(offset.subtract(instant.offset).multiply(multiplier).round());
return deltaOffset.add(deltaEpoch);
}
/** Compute the physically elapsed duration between two instants.
* <p>The returned duration is the number of seconds physically
* elapsed between the two instants, measured in a regular time
* scale with respect to surface of the Earth (i.e either the {@link
* TAIScale TAI scale}, the {@link TTScale TT scale} or the {@link
* GPSScale GPS scale}). It is the only method that gives a
* duration with a physical meaning.</p>
* <p>This method gives the same result (with less computation)
* as calling {@link #offsetFrom(FieldAbsoluteDate, TimeScale)}
* with a second argument set to one of the regular scales cited
* above.</p>
* <p>This method is the reverse of the {@link #FieldAbsoluteDate(FieldAbsoluteDate,
* double)} constructor.</p>
* @param instant instant to subtract from the instance
* @return offset in seconds between the two instants (positive
* if the instance is posterior to the argument)
* @see #offsetFrom(FieldAbsoluteDate, TimeScale)
* @see #FieldAbsoluteDate(FieldAbsoluteDate, double)
*/
public T durationFrom(final AbsoluteDate instant) {
return offset.subtract(instant.getOffset()).add(epoch - instant.getEpoch());
}
/** Compute the physically elapsed duration between two instants.
* <p>The returned duration is the number of seconds physically
* elapsed between the two instants, measured in a regular time
* scale with respect to surface of the Earth (i.e either the {@link
* TAIScale TAI scale}, the {@link TTScale TT scale} or the {@link
* GPSScale GPS scale}). It is the only method that gives a
* duration with a physical meaning.</p>
* <p>This method gives the same result (with less computation)
* as calling {@link #offsetFrom(FieldAbsoluteDate, TimeScale)}
* with a second argument set to one of the regular scales cited
* above.</p>
* <p>This method is the reverse of the {@link #FieldAbsoluteDate(FieldAbsoluteDate,
* double)} constructor.</p>
* @param instant instant to subtract from the instance
* @param timeUnit {@link TimeUnit} precision for the offset
* @return offset in the given timeunit between the two instants (positive
* if the instance is posterior to the argument), rounded to the nearest integer {@link TimeUnit}
* @see #FieldAbsoluteDate(FieldAbsoluteDate, long, TimeUnit)
* @since 12.1
*/
public T durationFrom(final AbsoluteDate instant, final TimeUnit timeUnit) {
final long deltaEpoch = timeUnit.convert(epoch - instant.getEpoch(), TimeUnit.SECONDS);
final long multiplier = timeUnit.convert(1, TimeUnit.SECONDS);
final T deltaOffset = offset.getField().getZero().add(offset.subtract(instant.getOffset()).multiply(multiplier).round());
return deltaOffset.add(deltaEpoch);
}
/** Compute the apparent clock offset between two instant <em>in the
* perspective of a specific {@link TimeScale time scale}</em>.
* <p>The offset is the number of seconds counted in the given
* time scale between the locations of the two instants, with
* all time scale irregularities removed (i.e. considering all
* days are exactly 86400 seconds long). This method will give
* a result that may not have a physical meaning if the time scale
* is irregular. For example since a leap second was introduced at
* the end of 2005, the apparent offset between 2005-12-31T23:59:59
* and 2006-01-01T00:00:00 is 1 second, but the physical duration
* of the corresponding time interval as returned by the {@link
* #durationFrom(FieldAbsoluteDate)} method is 2 seconds.</p>
* <p>This method is the reverse of the {@link #FieldAbsoluteDate(FieldAbsoluteDate,
* double, TimeScale)} constructor.</p>
* @param instant instant to subtract from the instance
* @param timeScale time scale with respect to which the offset should
* be computed
* @return apparent clock offset in seconds between the two instants
* (positive if the instance is posterior to the argument)
* @see #durationFrom(FieldAbsoluteDate)
* @see #FieldAbsoluteDate(FieldAbsoluteDate, double, TimeScale)
*/
public T offsetFrom(final FieldAbsoluteDate<T> instant, final TimeScale timeScale) {
final long elapsedDurationA = epoch - instant.epoch;
final T elapsedDurationB = offset.add(timeScale.offsetFromTAI(this)).
subtract(instant.offset.add(timeScale.offsetFromTAI(instant)));
return elapsedDurationB.add(elapsedDurationA);
}
/** Compute the offset between two time scales at the current instant.
* <p>The offset is defined as <i>l₁-l₂</i>
* where <i>l₁</i> is the location of the instant in
* the <code>scale1</code> time scale and <i>l₂</i> is the
* location of the instant in the <code>scale2</code> time scale.</p>
* @param scale1 first time scale
* @param scale2 second time scale
* @return offset in seconds between the two time scales at the
* current instant
*/
public T timeScalesOffset(final TimeScale scale1, final TimeScale scale2) {
return scale1.offsetFromTAI(this).subtract(scale2.offsetFromTAI(this));
}
/** Convert the instance to a Java {@link java.util.Date Date}.
* <p>Conversion to the Date class induces a loss of precision because
* the Date class does not provide sub-millisecond information. Java Dates
* are considered to be locations in some times scales.</p>
* @param timeScale time scale to use
* @return a {@link java.util.Date Date} instance representing the location
* of the instant in the time scale
*/
public Date toDate(final TimeScale timeScale) {
final double time = epoch + (offset.getReal() + timeScale.offsetFromTAI(this).getReal());
return new Date(FastMath.round((time + 10957.5 * 86400.0) * 1000));
}
/**
* Convert the instance to a Java {@link java.time.Instant Instant}.
* Nanosecond precision is preserved during this conversion
*
* @return a {@link java.time.Instant Instant} instance representing the location
* of the instant in the utc time scale
* @since 12.1
*/
@DefaultDataContext
public Instant toInstant() {
return toInstant(TimeScalesFactory.getTimeScales());
}
/**
* Convert the instance to a Java {@link java.time.Instant Instant}.
* Nanosecond precision is preserved during this conversion
*
* @param timeScales the timescales to use
* @return a {@link java.time.Instant Instant} instance representing the location
* of the instant in the utc time scale
* @since 12.1
*/
public Instant toInstant(final TimeScales timeScales) {
final UTCScale utc = timeScales.getUTC();
final String stringWithoutUtcOffset = toStringWithoutUtcOffset(utc, 9);
final LocalDateTime localDateTime = LocalDateTime.parse(stringWithoutUtcOffset, DateTimeFormatter.ISO_LOCAL_DATE_TIME);
return localDateTime.toInstant(ZoneOffset.UTC);
}
/** Split the instance into date/time components.
* @param timeScale time scale to use
* @return date/time components
*/
public DateTimeComponents getComponents(final TimeScale timeScale) {
if (Double.isInfinite(offset.getReal())) {
// special handling for past and future infinity
if (offset.getReal() < 0) {
return new DateTimeComponents(DateComponents.MIN_EPOCH, TimeComponents.H00);
} else {
return new DateTimeComponents(DateComponents.MAX_EPOCH,
new TimeComponents(23, 59, 59.999));
}
}
// Compute offset from 2000-01-01T00:00:00 in specified time scale.
// Use 2Sum for high accuracy.
final double taiOffset = timeScale.offsetFromTAI(this).getReal();
final SumAndResidual sumAndResidual = MathUtils.twoSum(offset.getReal(), taiOffset);
// split date and time
final long carry = (long) FastMath.floor(sumAndResidual.getSum());
double offset2000B = (sumAndResidual.getSum() - carry) + sumAndResidual.getResidual();
long offset2000A = epoch + carry + 43200L;
if (offset2000B < 0) {
offset2000A -= 1;
offset2000B += 1;
}
long time = offset2000A % 86400L;
if (time < 0L) {
time += 86400L;
}
final int date = (int) ((offset2000A - time) / 86400L);
// extract calendar elements
final DateComponents dateComponents = new DateComponents(DateComponents.J2000_EPOCH, date);
// extract time element, accounting for leap seconds
final double leap = timeScale.insideLeap(this) ? timeScale.getLeap(this.toAbsoluteDate()) : 0;
final int minuteDuration = timeScale.minuteDuration(this);
final TimeComponents timeComponents = TimeComponents.fromSeconds((int) time, offset2000B, leap, minuteDuration);
// build the components
return new DateTimeComponents(dateComponents, timeComponents);
}
/** Split the instance into date/time components for a local time.
*
* <p>This method uses the {@link DataContext#getDefault() default data context}.
*
* @param minutesFromUTC offset in <em>minutes</em> from UTC (positive Eastwards UTC,
* negative Westward UTC)
* @return date/time components
* @see #getComponents(int, TimeScale)
*/
@DefaultDataContext
public DateTimeComponents getComponents(final int minutesFromUTC) {
return getComponents(minutesFromUTC,
DataContext.getDefault().getTimeScales().getUTC());
}
/**
* Split the instance into date/time components for a local time.
*
* @param minutesFromUTC offset in <em>minutes</em> from UTC (positive Eastwards UTC,
* negative Westward UTC)
* @param utc time scale used to compute date and time components.
* @return date/time components
* @since 10.1
*/
public DateTimeComponents getComponents(final int minutesFromUTC,
final TimeScale utc) {
final DateTimeComponents utcComponents = getComponents(utc);
// shift the date according to UTC offset, but WITHOUT touching the seconds,
// as they may exceed 60.0 during a leap seconds introduction,
// and we want to preserve these special cases
final double seconds = utcComponents.getTime().getSecond();
int minute = utcComponents.getTime().getMinute() + minutesFromUTC;
final int hourShift;
if (minute < 0) {
hourShift = (minute - 59) / 60;
} else if (minute > 59) {
hourShift = minute / 60;
} else {
hourShift = 0;
}
minute -= 60 * hourShift;
int hour = utcComponents.getTime().getHour() + hourShift;
final int dayShift;
if (hour < 0) {
dayShift = (hour - 23) / 24;
} else if (hour > 23) {
dayShift = hour / 24;
} else {
dayShift = 0;
}
hour -= 24 * dayShift;
return new DateTimeComponents(new DateComponents(utcComponents.getDate(), dayShift),
new TimeComponents(hour, minute, seconds, minutesFromUTC));
}
/** {@inheritDoc} */
@Override
public FieldAbsoluteDate<T> getDate() {
return this;
}
/** Get the field.
* @return field instance.
*/
public Field<T> getField() {
return field;
}
/** Split the instance into date/time components for a time zone.
*
* <p>This method uses the {@link DataContext#getDefault() default data context}.
*
* @param timeZone time zone
* @return date/time components
* @see #getComponents(TimeZone, TimeScale)
*/
@DefaultDataContext
public DateTimeComponents getComponents(final TimeZone timeZone) {
return getComponents(timeZone, DataContext.getDefault().getTimeScales().getUTC());
}
/** Split the instance into date/time components for a time zone.
* @param timeZone time zone
* @param utc time scale used to compute date and time components.
* @return date/time components
* @since 10.1
*/
public DateTimeComponents getComponents(final TimeZone timeZone,
final TimeScale utc) {
final FieldAbsoluteDate<T> javaEpoch =
new FieldAbsoluteDate<>(field, DateComponents.JAVA_EPOCH, utc);
final long milliseconds = FastMath.round((offsetFrom(javaEpoch, utc).getReal()) * 1000);
return getComponents(timeZone.getOffset(milliseconds) / 60000, utc);
}
/** Compare the instance with another date.
* @param date other date to compare the instance to
* @return a negative integer, zero, or a positive integer as this date
* is before, simultaneous, or after the specified date.
*/
public int compareTo(final FieldAbsoluteDate<T> date) {
return Double.compare(durationFrom(date).getReal(), 0.0);
}
/** Check if the instance represents the same time as another instance.
* @param date other date
* @return true if the instance and the other date refer to the same instant
*/
@SuppressWarnings("unchecked")
public boolean equals(final Object date) {
if (date == this) {
// first fast check
return true;
}
if (date instanceof FieldAbsoluteDate) {
return durationFrom((FieldAbsoluteDate<T>) date).getReal() == 0.0;
}
return false;
}
/** Check if the instance represents the same time as another.
* @param other the instant to compare this date to
* @return true if the instance and the argument refer to the same instant
* @see #isCloseTo(FieldTimeStamped, double)
* @since 10.1
*/
public boolean isEqualTo(final FieldTimeStamped<T> other) {
return this.equals(other.getDate());
}
/** Check if the instance time is close to another.
* @param other the instant to compare this date to
* @param tolerance the separation, in seconds, under which the two instants will be considered close to each other
* @return true if the duration between the instance and the argument is strictly below the tolerance
* @see #isEqualTo(FieldTimeStamped)
* @since 10.1
*/
public boolean isCloseTo(final FieldTimeStamped<T> other, final double tolerance) {
return FastMath.abs(this.durationFrom(other.getDate()).getReal()) < tolerance;
}
/** Check if the instance represents a time that is strictly before another.
* @param other the instant to compare this date to
* @return true if the instance is strictly before the argument when ordering chronologically
* @see #isBeforeOrEqualTo(FieldTimeStamped)
* @since 10.1
*/
public boolean isBefore(final FieldTimeStamped<T> other) {
return this.compareTo(other.getDate()) < 0;
}
/** Check if the instance represents a time that is strictly after another.
* @param other the instant to compare this date to
* @return true if the instance is strictly after the argument when ordering chronologically
* @see #isAfterOrEqualTo(FieldTimeStamped)
* @since 10.1
*/
public boolean isAfter(final FieldTimeStamped<T> other) {
return this.compareTo(other.getDate()) > 0;
}
/** Check if the instance represents a time that is before or equal to another.
* @param other the instant to compare this date to
* @return true if the instance is before (or equal to) the argument when ordering chronologically
* @see #isBefore(FieldTimeStamped)
* @since 10.1
*/
public boolean isBeforeOrEqualTo(final FieldTimeStamped<T> other) {
return this.isEqualTo(other) || this.isBefore(other);
}
/** Check if the instance represents a time that is after or equal to another.
* @param other the instant to compare this date to
* @return true if the instance is after (or equal to) the argument when ordering chronologically
* @see #isAfterOrEqualTo(FieldTimeStamped)
* @since 10.1
*/
public boolean isAfterOrEqualTo(final FieldTimeStamped<T> other) {
return this.isEqualTo(other) || this.isAfter(other);
}
/** Check if the instance represents a time that is strictly between two others representing
* the boundaries of a time span. The two boundaries can be provided in any order: in other words,
* whether <code>boundary</code> represents a time that is before or after <code>otherBoundary</code> will
* not change the result of this method.
* @param boundary one end of the time span
* @param otherBoundary the other end of the time span
* @return true if the instance is strictly between the two arguments when ordering chronologically
* @see #isBetweenOrEqualTo(FieldTimeStamped, FieldTimeStamped)
* @since 10.1
*/
public boolean isBetween(final FieldTimeStamped<T> boundary, final FieldTimeStamped<T> otherBoundary) {
final FieldTimeStamped<T> beginning;
final FieldTimeStamped<T> end;
if (boundary.getDate().isBefore(otherBoundary)) {
beginning = boundary;
end = otherBoundary;
} else {
beginning = otherBoundary;
end = boundary;
}
return this.isAfter(beginning) && this.isBefore(end);
}
/** Check if the instance represents a time that is between two others representing
* the boundaries of a time span, or equal to one of them. The two boundaries can be provided in any order:
* in other words, whether <code>boundary</code> represents a time that is before or after
* <code>otherBoundary</code> will not change the result of this method.
* @param boundary one end of the time span
* @param otherBoundary the other end of the time span
* @return true if the instance is between the two arguments (or equal to at least one of them)
* when ordering chronologically
* @see #isBetween(FieldTimeStamped, FieldTimeStamped)
* @since 10.1
*/
public boolean isBetweenOrEqualTo(final FieldTimeStamped<T> boundary, final FieldTimeStamped<T> otherBoundary) {
return this.isEqualTo(boundary) || this.isEqualTo(otherBoundary) || this.isBetween(boundary, otherBoundary);
}
/** Get a hashcode for this date.
* @return hashcode
*/
public int hashCode() {
final long l = Double.doubleToLongBits(durationFrom(AbsoluteDate.ARBITRARY_EPOCH).getReal());
return (int) (l ^ (l >>> 32));
}
/**
* Get a String representation of the instant location with up to 16 digits of
* precision for the seconds value.
*
* <p> Since this method is used in exception messages and error handling every
* effort is made to return some representation of the instant. If UTC is available
* from the default data context then it is used to format the string in UTC. If not
* then TAI is used. Finally if the prior attempts fail this method falls back to
* converting this class's internal representation to a string.
*
* <p>This method uses the {@link DataContext#getDefault() default data context}.
*
* @return a string representation of the instance, in ISO-8601 format if UTC is
* available from the default data context.
* @see AbsoluteDate#toString()
* @see #toString(TimeScale)
* @see DateTimeComponents#toString(int, int)
*/
@DefaultDataContext
public String toString() {
return toAbsoluteDate().toString();
}
/**
* Get a String representation of the instant location in ISO-8601 format without the
* UTC offset and with up to 16 digits of precision for the seconds value.
*
* @param timeScale time scale to use
* @return a string representation of the instance.
* @see DateTimeComponents#toString(int, int)
*/
public String toString(final TimeScale timeScale) {
return getComponents(timeScale).toStringWithoutUtcOffset();
}
/** Get a String representation of the instant location for a local time.
*
* <p>This method uses the {@link DataContext#getDefault() default data context}.
*
* @param minutesFromUTC offset in <em>minutes</em> from UTC (positive Eastwards UTC,
* negative Westward UTC).
* @return string representation of the instance,
* in ISO-8601 format with milliseconds accuracy
* @see #toString(int, TimeScale)
*/
@DefaultDataContext
public String toString(final int minutesFromUTC) {
return toString(minutesFromUTC,
DataContext.getDefault().getTimeScales().getUTC());
}
/**
* Get a String representation of the instant location for a local time.
*
* @param minutesFromUTC offset in <em>minutes</em> from UTC (positive Eastwards UTC,
* negative Westward UTC).
* @param utc time scale used to compute date and time components.
* @return string representation of the instance, in ISO-8601 format with milliseconds
* accuracy
* @since 10.1
*/
public String toString(final int minutesFromUTC, final TimeScale utc) {
final int minuteDuration = utc.minuteDuration(this);
return getComponents(minutesFromUTC, utc).toString(minuteDuration);
}
/** Get a String representation of the instant location for a time zone.
*
* <p>This method uses the {@link DataContext#getDefault() default data context}.
*
* @param timeZone time zone
* @return string representation of the instance,
* in ISO-8601 format with milliseconds accuracy
* @see #toString(TimeZone, TimeScale)
*/
@DefaultDataContext
public String toString(final TimeZone timeZone) {
return toString(timeZone, DataContext.getDefault().getTimeScales().getUTC());
}
/**
* Get a String representation of the instant location for a time zone.
*
* @param timeZone time zone
* @param utc time scale used to compute date and time components.
* @return string representation of the instance, in ISO-8601 format with milliseconds
* accuracy
* @since 10.1
*/
public String toString(final TimeZone timeZone, final TimeScale utc) {
final int minuteDuration = utc.minuteDuration(this);
return getComponents(timeZone, utc).toString(minuteDuration);
}
/**
* Return a string representation of this date-time, rounded to the given precision.
*
* <p>The format used is ISO8601 without the UTC offset.</p>
*
*
* @param timeScale to use to compute components.
* @param fractionDigits the number of digits to include after the decimal point in
* the string representation of the seconds. The date and time
* is first rounded as necessary. {@code fractionDigits} must be
* greater than or equal to {@code 0}.
* @return string representation of this date, time, and UTC offset
* @see #toString(TimeScale)
* @see DateTimeComponents#toString(int, int)
* @see DateTimeComponents#toStringWithoutUtcOffset(int, int)
* @since 12.2
*/
public String toStringWithoutUtcOffset(final TimeScale timeScale,
final int fractionDigits) {
return this.getComponents(timeScale)
.toStringWithoutUtcOffset(timeScale.minuteDuration(this), fractionDigits);
}
/** Get a time-shifted date.
* <p>
* Calling this method is equivalent to call <code>new FieldAbsoluteDate(this, dt)</code>.
* </p>
* @param dt time shift in seconds
* @return a new date, shifted with respect to instance (which is immutable)
* @see org.orekit.utils.FieldPVCoordinates#shiftedBy(double)
* @see org.orekit.attitudes.FieldAttitude#shiftedBy(double)
* @see org.orekit.orbits.FieldOrbit#shiftedBy(double)
* @see org.orekit.propagation.FieldSpacecraftState#shiftedBy(double)
*/
@Override
public FieldAbsoluteDate<T> shiftedBy(final double dt) {
return new FieldAbsoluteDate<>(this, dt);
}
/** Get a time-shifted date.
* <p>
* Calling this method is equivalent to call <code>new FieldAbsoluteDate(this, dt, timeUnit)</code>.
* </p>
* @param dt time shift in time units
* @param timeUnit {@link TimeUnit} for dt
* @return a new date, shifted with respect to instance (which is immutable)
* @see org.orekit.utils.FieldPVCoordinates#shiftedBy(double)
* @see org.orekit.attitudes.FieldAttitude#shiftedBy(double)
* @see org.orekit.orbits.FieldOrbit#shiftedBy(double)
* @see org.orekit.propagation.FieldSpacecraftState#shiftedBy(double)
* @since 12.1
*/
public FieldAbsoluteDate<T> shiftedBy(final long dt, final TimeUnit timeUnit) {
return new FieldAbsoluteDate<>(this, dt, timeUnit);
}
/** Transform the FieldAbsoluteDate in an AbsoluteDate.
* @return AbsoluteDate of the FieldObject
* */
public AbsoluteDate toAbsoluteDate() {
return new AbsoluteDate(epoch, offset.getReal());
}
/** Check if the Field is semantically equal to zero.
*
* <p> Using {@link FieldElement#isZero()}
*
* @return true the Field is semantically equal to zero
* @since 12.0
*/
public boolean hasZeroField() {
return (offset instanceof Derivative<?> || offset instanceof Complex) && offset.subtract(offset.getReal()).isZero();
}
}