SaastamoinenModel.java

/* Copyright 2011-2012 Space Applications Services
 * Licensed to CS Communication & Systèmes (CS) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * CS licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.orekit.models.earth;

import java.util.Arrays;

import org.apache.commons.math3.analysis.BivariateFunction;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.analysis.interpolation.BivariateGridInterpolator;
import org.apache.commons.math3.analysis.interpolation.LinearInterpolator;
import org.apache.commons.math3.analysis.polynomials.PolynomialFunction;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.InsufficientDataException;
import org.apache.commons.math3.exception.NoDataException;
import org.apache.commons.math3.exception.NonMonotonicSequenceException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathArrays;
import org.orekit.data.DataProvidersManager;
import org.orekit.errors.OrekitException;
import org.orekit.utils.Constants;
import org.orekit.utils.InterpolationTableLoader;

/** The modified Saastamoinen model. Estimates the path delay imposed to
 * electro-magnetic signals by the troposphere according to the formula:
 * <pre>
 * δ = 2.277e-3 / cos z * (P + (1255 / T + 0.05) * e - B * tan²
 * z) + δR
 * </pre>
 * with the following input data provided to the model:
 * <ul>
 * <li>z: zenith angle</li>
 * <li>P: atmospheric pressure</li>
 * <li>T: temperature</li>
 * <li>e: partial pressure of water vapour</li>
 * <li>B, δR: correction terms</li>
 * </ul>
 * <p>
 * The model supports custom δR correction terms to be read from a
 * configuration file (saastamoinen-correction.txt) via the
 * {@link DataProvidersManager}.
 * </p>
 * @author Thomas Neidhart
 * @see "Guochang Xu, GPS - Theory, Algorithms and Applications, Springer, 2007"
 */
public class SaastamoinenModel implements TroposphericDelayModel {

    /** Serializable UID. */
    private static final long serialVersionUID = -5702086204232977550L;

    /** The temperature at the station [K]. */
    private double t0;

    /** The atmospheric pressure [mbar]. */
    private double p0;

    /** The humidity [percent]. */
    private double r0;

    /** Create a new Saastamoinen model for the troposphere using the given
     * environmental conditions.
     * @param t0 the temperature at the station [K]
     * @param p0 the atmospheric pressure at the station [mbar]
     * @param r0 the humidity at the station [percent] (50% -> 0.5)
     */
    public SaastamoinenModel(final double t0, final double p0, final double r0) {
        this.t0 = t0;
        this.p0 = p0;
        this.r0 = r0;
    }

    /** Create a new Saastamoinen model using a standard atmosphere model.
     * <p>
     * <ul>
     * <li>temperature: 18 degree Celsius
     * <li>pressure: 1013.25 mbar
     * <li>humidity: 50%
     * </ul>
     * </p>
     * @return a Saastamoinen model with standard environmental values
     */
    public static SaastamoinenModel getStandardModel() {
        return new SaastamoinenModel(273.16 + 18, 1013.25, 0.5);
    }

    /** {@inheritDoc} */
    public double calculatePathDelay(final double elevation, final double height) {
        // the corrected temperature using a temperature gradient of -6.5 K/km
        final double T = t0 - 6.5e-3 * height;
        // the corrected pressure
        final double P = p0 * FastMath.pow(1.0 - 2.26e-5 * height, 5.225);
        // the corrected humidity
        final double R = r0 * FastMath.exp(-6.396e-4 * height);

        // interpolate the b correction term
        final double B = Functions.INSTANCE.b.value(height / 1e3);
        // calculate e
        final double e = R * FastMath.exp(Functions.INSTANCE.e.value(T));

        // calculate the zenith angle from the elevation and convert to radians
        final double zInDegree = FastMath.abs(90.0 - elevation);
        final double z = FastMath.toRadians(zInDegree);

        // get correction factor
        final double deltaR = getDeltaR(height, zInDegree);

        // calculate the path delay in m
        final double tan = FastMath.tan(z);
        final double delta = 2.277e-3 / Math.cos(z) *
                             (P + (1255d / T + 5e-2) * e - B * tan * tan) + deltaR;

        return delta;
    }

    /** {@inheritDoc} */
    public double calculateSignalDelay(final double elevation, final double height) {
        return calculatePathDelay(elevation, height) / Constants.SPEED_OF_LIGHT;
    }

    /** Calculates the delta R correction term using linear interpolation.
     * @param height the height of the station in m
     * @param zenith the zenith angle of the satellite in degrees
     * @return the delta R correction term in m
     */
    private double getDeltaR(final double height, final double zenith) {
        // limit the height to a range of [0, 5000] m
        final double h = FastMath.min(Math.max(0, height), 5000);
        // limit the zenith angle to 90 degree
        // Note: the function is symmetric for negative zenith angles
        final double z = FastMath.min(Math.abs(zenith), 90);
        return Functions.INSTANCE.deltaR.value(h, z);
    }

    /** Contains several functions used by the Saastamoinen model to calculate
     * the path delay. The functions are static and thus accessed via a static
     * instance of this class. The δR correction terms can be optionally
     * loaded from a configuration file, otherwise default values are used.
     */
    private static class Functions {

        /** The singleton instance containing the functions. */
        private static final Functions INSTANCE = new Functions();

        /** Interpolation function for the B correction term. */
        private final UnivariateFunction b;

        /** Polynomial function for the e term. */
        private final PolynomialFunction e;

        /** Interpolation function for the delta R correction term. */
        private final BivariateFunction deltaR;

        /** Initialize the functions. */
        private Functions() {
            final double xValForB[] = {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0};
            final double yValForB[] = {1.156, 1.079, 1.006, 0.938, 0.874, 0.813, 0.757, 0.654, 0.563};

            b = new LinearInterpolator().interpolate(xValForB, yValForB);

            // a function to estimate the partial pressure of water vapour
            e = new PolynomialFunction(new double[] {-37.2465, 0.213166, -0.000256908});

            // read the delta R interpolation function from the config file
            final InterpolationTableLoader loader = new InterpolationTableLoader();
            BivariateFunction func = null;
            try {
                DataProvidersManager.getInstance().feed("^saastamoinen-correction\\.txt$", loader);
                if (!loader.stillAcceptsData()) {
                    func = new BilinearInterpolator().interpolate(loader.getAbscissaGrid(),
                                                                       loader.getOrdinateGrid(),
                                                                       loader.getValuesSamples());
                }
            } catch (OrekitException ex) {
                // config file could not be loaded, use the default values instead
            }

            if (func != null) {
                deltaR = func;
            } else {
                // use default values if the file could not be read

                // the correction table in the referenced book only contains values for an angle of 60 - 80
                // degree, thus for 0 degree, the correction term is assumed to be 0, for degrees > 80 it
                // is assumed to be the same value as for 80.

                // the height in m
                final double xValForR[] = {0, 500, 1000, 1500, 2000, 3000, 4000, 5000};
                // the zenith angle in degrees
                final double yValForR[] = {0.0, 60.0, 66.0, 70.0, 73.0, 75.0, 76.0, 77.0,
                                           78.0, 78.50, 79.0, 79.50, 79.75, 80.0, 90.0};

                final double[][] fval = new double[][] {
                    {0.000, 0.003, 0.006, 0.012, 0.020, 0.031, 0.039, 0.050, 0.065,
                     0.075, 0.087, 0.102, 0.111, 0.121, 0.121},
                    {0.000, 0.003, 0.006, 0.011, 0.018, 0.028, 0.035, 0.045, 0.059,
                     0.068, 0.079, 0.093, 0.101, 0.110, 0.110},
                    {0.000, 0.002, 0.005, 0.010, 0.017, 0.025, 0.032, 0.041, 0.054,
                     0.062, 0.072, 0.085, 0.092, 0.100, 0.100},
                    {0.000, 0.002, 0.005, 0.009, 0.015, 0.023, 0.029, 0.037, 0.049,
                     0.056, 0.065, 0.077, 0.083, 0.091, 0.091},
                    {0.000, 0.002, 0.004, 0.008, 0.013, 0.021, 0.026, 0.033, 0.044,
                     0.051, 0.059, 0.070, 0.076, 0.083, 0.083},
                    {0.000, 0.002, 0.003, 0.006, 0.011, 0.017, 0.021, 0.027, 0.036,
                     0.042, 0.049, 0.058, 0.063, 0.068, 0.068},
                    {0.000, 0.001, 0.003, 0.005, 0.009, 0.014, 0.017, 0.022, 0.030,
                     0.034, 0.040, 0.047, 0.052, 0.056, 0.056},
                    {0.000, 0.001, 0.002, 0.004, 0.007, 0.011, 0.014, 0.018, 0.024,
                     0.028, 0.033, 0.039, 0.043, 0.047, 0.047} };

                // the actual delta R is interpolated using a a bilinear interpolator
                deltaR = new BilinearInterpolator().interpolate(xValForR, yValForR, fval);
            }
        }

        /**
         * Function that implements a standard bilinear interpolation.
         * The interpolation as found
         * in the Wikipedia reference <a href =
         * "http://en.wikipedia.org/wiki/Bilinear_interpolation">BiLinear
         * Interpolation</a>. This is a stand-in until Apache Math has a
         * bilinear interpolator
         */
        private static class BilinearInterpolatingFunction
            implements BivariateFunction {

            /**
             * The minimum number of points that are needed to compute the
             * function.
             */
            private static final int MIN_NUM_POINTS = 2;

            /** Samples x-coordinates. */
            private final double[] xval;

            /** Samples y-coordinates. */
            private final double[] yval;

            /** Set of cubic splines patching the whole data grid. */
            private final double[][] fval;

            /**
             * @param x Sample values of the x-coordinate, in increasing order.
             * @param y Sample values of the y-coordinate, in increasing order.
             * @param f Values of the function on every grid point. the expected
             *        number of elements.
             * @throws DimensionMismatchException if the length of x and y don't
             *         match the row, column height of f
             * @throws IllegalArgumentException if any of the arguments are null
             * @throws NoDataException if any of the arrays has zero length.
             * @throws NonMonotonicSequenceException if {@code x} or {@code y}
             *         are not strictly increasing.
             */
            public BilinearInterpolatingFunction(final double[] x, final double[] y, final double[][] f)
                throws DimensionMismatchException, IllegalArgumentException, NoDataException,
                NonMonotonicSequenceException {

                if (x == null || y == null || f == null || f[0] == null) {
                    throw new IllegalArgumentException("All arguments must be non-null");
                }

                final int xLen = x.length;
                final int yLen = y.length;

                if (xLen == 0 || yLen == 0 || f.length == 0 || f[0].length == 0) {
                    throw new NoDataException();
                }

                if (xLen < MIN_NUM_POINTS || yLen < MIN_NUM_POINTS || f.length < MIN_NUM_POINTS ||
                    f[0].length < MIN_NUM_POINTS) {
                    throw new InsufficientDataException();
                }

                if (xLen != f.length) {
                    throw new DimensionMismatchException(xLen, f.length);
                }

                if (yLen != f[0].length) {
                    throw new DimensionMismatchException(yLen, f[0].length);
                }

                MathArrays.checkOrder(x);
                MathArrays.checkOrder(y);

                xval = x.clone();
                yval = y.clone();
                fval = f.clone();
            }

            @Override
            public double value(final double x, final double y) {
                final int offset = 1;
                final int count = offset + 1;
                final int i = searchIndex(x, xval, offset, count);
                final int j = searchIndex(y, yval, offset, count);

                final double x1 = xval[i];
                final double x2 = xval[i + 1];
                final double y1 = yval[j];
                final double y2 = yval[j + 1];
                final double fQ11 = fval[i][j];
                final double fQ21 = fval[i + 1][j];
                final double fQ12 = fval[i][j + 1];
                final double fQ22 = fval[i + 1][j + 1];

                final double f = (fQ11 * (x2 - x) * (y2 - y) + fQ21 * (x - x1) * (y2 - y) + fQ12 * (x2 - x) * (y - y1) + fQ22 *
                                                                                                                         (x - x1) *
                                                                                                                         (y - y1)) /
                                 ((x2 - x1) * (y2 - y1));

                return f;
            }

            /**
             * @param c Coordinate.
             * @param val Coordinate samples.
             * @param offset how far back from found value to offset for
             *        querying
             * @param count total number of elements forward from beginning that
             *        will be queried
             * @return the index in {@code val} corresponding to the interval
             *         containing {@code c}.
             * @throws OutOfRangeException if {@code c} is out of the range
             *         defined by the boundary values of {@code val}.
             */
            private int searchIndex(final double c, final double[] val, final int offset, final int count) {
                int r = Arrays.binarySearch(val, c);

                if (r == -1 || r == -val.length - 1) {
                    throw new OutOfRangeException(c, val[0], val[val.length - 1]);
                }

                if (r < 0) {
                    // "c" in within an interpolation sub-interval, which
                    // returns
                    // negative
                    // need to remove the negative sign for consistency
                    r = -r - offset - 1;
                } else {
                    r -= offset;
                }

                if (r < 0) {
                    r = 0;
                }

                if ((r + count) >= val.length) {
                    // "c" is the last sample of the range: Return the index
                    // of the sample at the lower end of the last sub-interval.
                    r = val.length - count;
                }

                return r;
            }

        }

        /**
         * Class that generates a bilinear interpolator.
         * This is a stand-in until Apache Math has its own bi-linear interpolator
         */
        private static class BilinearInterpolator
            implements BivariateGridInterpolator {

            @Override
            public BivariateFunction interpolate(final double[] xval, final double[] yval, final double[][] fval)
                throws NoDataException, DimensionMismatchException, NonMonotonicSequenceException,
                NumberIsTooSmallException {

                if (xval == null || yval == null || fval == null || fval[0] == null) {
                    throw new IllegalArgumentException("Input arguments must all be non-null");
                }

                if (xval.length == 0 || yval.length == 0 || fval.length == 0) {
                    throw new NoDataException();
                }

                MathArrays.checkOrder(xval);
                MathArrays.checkOrder(yval);

                return new BilinearInterpolatingFunction(xval, yval, fval);
            }

        }

    }

}