GeographicZoneDetector.java

/* Copyright 2002-2015 CS Systèmes d'Information
 * Licensed to CS Systèmes d'Information (CS) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * CS licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.orekit.propagation.events;

import java.io.Serializable;

import org.apache.commons.math3.geometry.enclosing.EnclosingBall;
import org.apache.commons.math3.geometry.euclidean.threed.Vector3D;
import org.apache.commons.math3.geometry.partitioning.BSPTree;
import org.apache.commons.math3.geometry.partitioning.BSPTreeVisitor;
import org.apache.commons.math3.geometry.spherical.twod.Circle;
import org.apache.commons.math3.geometry.spherical.twod.S2Point;
import org.apache.commons.math3.geometry.spherical.twod.Sphere2D;
import org.apache.commons.math3.geometry.spherical.twod.SphericalPolygonsSet;
import org.apache.commons.math3.util.FastMath;
import org.orekit.bodies.BodyShape;
import org.orekit.bodies.GeodeticPoint;
import org.orekit.errors.OrekitException;
import org.orekit.propagation.SpacecraftState;
import org.orekit.propagation.events.handlers.EventHandler;
import org.orekit.propagation.events.handlers.StopOnIncreasing;

/** Detector for entry/exit of a zone defined by geographic boundaries.
 * <p>This detector identifies when a spacecraft crosses boundaries of
 * general shapes defined on the surface of the globe. Typical shapes
 * of interest can be countries, land masses or physical areas like
 * the south atlantic anomaly. Shapes can be arbitrarily complicated:
 * convex or non-convex, in one piece or several non-connected islands,
 * they can include poles, they can have holes like the Caspian Sea (this
 * would be a hole only if one is interested in land masses, of course).
 * Complex shapes involve of course more computing time than simple shapes.</p>
 * @author Luc Maisonobe
 * @since 6.2
 */
public class GeographicZoneDetector extends AbstractDetector<GeographicZoneDetector> {

    /** Serializable UID. */
    private static final long serialVersionUID = 20140619L;

    /** Body on which the geographic zone is defined. */
    private BodyShape body;

    /** Zone definition. */
    private final transient SphericalPolygonsSet zone;

    /** Spherical cap surrounding the zone. */
    private final transient EnclosingBall<Sphere2D, S2Point> cap;

    /** Margin to apply to the zone. */
    private final double margin;

    /** Build a new detector.
     * <p>The new instance uses default values for maximal checking interval
     * ({@link #DEFAULT_MAXCHECK}) and convergence threshold ({@link
     * #DEFAULT_THRESHOLD}).</p>
     * @param body body on which the geographic zone is defined
     * @param zone geographic zone to consider
     * @param margin angular margin to apply to the zone
     */
    public GeographicZoneDetector(final BodyShape body,
                                  final SphericalPolygonsSet zone,  final double margin) {
        this(DEFAULT_MAXCHECK, DEFAULT_THRESHOLD, body, zone, margin);
    }

    /** Build a detector.
     * @param maxCheck maximal checking interval (s)
     * @param threshold convergence threshold (s)
     * @param body body on which the geographic zone is defined
     * @param zone geographic zone to consider
     * @param margin angular margin to apply to the zone
     */
    public GeographicZoneDetector(final double maxCheck, final double threshold,
                                  final BodyShape body,
                                  final SphericalPolygonsSet zone,  final double margin) {
        this(maxCheck, threshold, DEFAULT_MAX_ITER, new StopOnIncreasing<GeographicZoneDetector>(),
             body, zone, zone.getEnclosingCap(), margin);
    }

    /** Private constructor with full parameters.
     * <p>
     * This constructor is private as users are expected to use the builder
     * API with the various {@code withXxx()} methods to set up the instance
     * in a readable manner without using a huge amount of parameters.
     * </p>
     * @param maxCheck maximum checking interval (s)
     * @param threshold convergence threshold (s)
     * @param maxIter maximum number of iterations in the event time search
     * @param handler event handler to call at event occurrences
     * @param body body on which the geographic zone is defined
     * @param zone geographic zone to consider
     * @param cap spherical cap surrounding the zone
     * @param margin angular margin to apply to the zone
     */
    private GeographicZoneDetector(final double maxCheck, final double threshold,
                                   final int maxIter, final EventHandler<GeographicZoneDetector> handler,
                                   final BodyShape body,
                                   final SphericalPolygonsSet zone,
                                   final EnclosingBall<Sphere2D, S2Point> cap,
                                   final double margin) {
        super(maxCheck, threshold, maxIter, handler);
        this.body   = body;
        this.zone   = zone;
        this.cap    = cap;
        this.margin = margin;
    }

    /** {@inheritDoc} */
    @Override
    protected GeographicZoneDetector create(final double newMaxCheck, final double newThreshold,
                                            final int newMaxIter, final EventHandler<GeographicZoneDetector> newHandler) {
        return new GeographicZoneDetector(newMaxCheck, newThreshold, newMaxIter, newHandler,
                                          body, zone, cap, margin);
    }

    /**
     * Setup the detector margin.
     * @param newMargin angular margin to apply to the zone
     * @return a new detector with updated configuration (the instance is not changed)
     */
    public GeographicZoneDetector withMargin(final double newMargin) {
        return new GeographicZoneDetector(getMaxCheckInterval(), getThreshold(), getMaxIterationCount(), getHandler(),
                                          body, zone, cap, newMargin);
    }

    /** Get the body on which the geographic zone is defined.
     * @return body on which the geographic zone is defined
     */
    public BodyShape getBody() {
        return body;
    }

    /** Get the geographic zone.
     * @return the geographic zone
     */
    public SphericalPolygonsSet getZone() {
        return zone;
    }

    /** Get the angular margin to apply (radians).
     * @return the angular margin to apply (radians)
     */
    public double getMargin() {
        return margin;
    }

    /** Compute the value of the detection function.
     * <p>
     * The value is the signed distance to boundary, minus the margin. It is
     * positive if the spacecraft is outside of the zone and negative if it is inside.
     * </p>
     * @param s the current state information: date, kinematics, attitude
     * @return signed distance to boundary minus the margin
     * @exception OrekitException if some specific error occurs
     */
    public double g(final SpacecraftState s) throws OrekitException {

        // convert state to geodetic coordinates
        final GeodeticPoint gp = body.transform(s.getPVCoordinates().getPosition(),
                                                s.getFrame(), s.getDate());

        // map the point to a sphere (geodetic coordinates have already taken care of ellipsoid flatness)
        final S2Point s2p = new S2Point(gp.getLongitude(), 0.5 * FastMath.PI - gp.getLatitude());

        // for faster computation, we start using only the surrounding cap, to filter out
        // far away points (which correspond to most of the points if the zone is small)
        final double crudeDistance = cap.getCenter().distance(s2p) - cap.getRadius();
        if (crudeDistance - margin > FastMath.max(FastMath.abs(margin), 0.01)) {
            // we know we are strictly outside of the zone,
            // use the crude distance to compute the (positive) return value
            return crudeDistance - margin;
        }

        // we are close, we need to compute carefully the exact offset
        // project the point to the closest zone boundary
        return zone.projectToBoundary(s2p).getOffset() - margin;

    }

    /** Replace the instance with a data transfer object for serialization.
     * @return data transfer object that will be serialized
     */
    private Object writeReplace() {
        return new DTO(this);
    }

    /** Internal class used only for serialization. */
    private static class DTO implements Serializable {

        /** Serializable UID. */
        private static final long serialVersionUID = 20140619L;

        /** Max check interval. */
        private final double maxCheck;

        /** Convergence threshold. */
        private final double threshold;

        /** Maximum number of iterations in the event time search. */
        private final int maxIter;

        /** Body on which the geographic zone is defined. */
        private final BodyShape body;

        /** Margin to apply to the zone. */
        private final double margin;

        /** Tolerance for the zone. */
        private final double tolerance;

        /** Zone cut hyperplanes. */
        private final double[] cuts;

        /** Leaf nodes indices. */
        private final int[] leafs;

        /** Zone interior/exterior indicators. */
        private final boolean[] flags;

        /** Internal nodes counter. */
        private transient int internalNodes;

        /** Leaf nodes counter. */
        private transient int leafNodes;

        /** Node index. */
        private transient int nodeIndex;

        /** Index in cut hyperplanes array. */
        private transient int cutIndex;

        /** Index in interior/exterior flags array. */
        private transient int flagIndex;

        /** Simple constructor.
         * @param detector instance to serialize
         */
        private DTO(final GeographicZoneDetector detector) {

            this.maxCheck  = detector.getMaxCheckInterval();
            this.threshold = detector.getThreshold();
            this.maxIter   = detector.getMaxIterationCount();
            this.body      = detector.body;
            this.margin    = detector.margin;
            this.tolerance = detector.zone.getTolerance();

            // count the nodes
            internalNodes = 0;
            leafNodes     = 0;
            detector.zone.getTree(false).visit(new BSPTreeVisitor<Sphere2D>() {

                /** {@inheritDoc} */
                public Order visitOrder(final BSPTree<Sphere2D> node) {
                    return Order.SUB_MINUS_PLUS;
                }

                /** {@inheritDoc} */
                public void visitInternalNode(final BSPTree<Sphere2D> node) {
                    ++internalNodes;
                }

                /** {@inheritDoc} */
                public void visitLeafNode(final BSPTree<Sphere2D> node) {
                    ++leafNodes;
                }

            });

            // allocate the arrays for flattened tree
            cuts      = new double[3 * internalNodes];
            leafs     = new int[leafNodes];
            flags     = new boolean[leafNodes];
            nodeIndex = 0;
            cutIndex  = 0;
            flagIndex = 0;
            detector.zone.getTree(false).visit(new BSPTreeVisitor<Sphere2D>() {

                /** {@inheritDoc} */
                public Order visitOrder(final BSPTree<Sphere2D> node) {
                    return Order.SUB_MINUS_PLUS;
                }

                /** {@inheritDoc} */
                public void visitInternalNode(final BSPTree<Sphere2D> node) {
                    final Vector3D cutPole = ((Circle) node.getCut().getHyperplane()).getPole();
                    cuts[cutIndex++] = cutPole.getX();
                    cuts[cutIndex++] = cutPole.getY();
                    cuts[cutIndex++] = cutPole.getZ();
                    nodeIndex++;
                }

                /** {@inheritDoc} */
                public void visitLeafNode(final BSPTree<Sphere2D> node) {
                    leafs[flagIndex]   = nodeIndex++;
                    flags[flagIndex++] = (Boolean) node.getAttribute();
                }

            });

        }

        /** Replace the deserialized data transfer object with a {@link GeographicZoneDetector}.
         * @return replacement {@link GeographicZoneDetector}
         */
        private Object readResolve() {

            // rebuild the tree from the flattened arrays
            BSPTree<Sphere2D> node = new BSPTree<Sphere2D>();
            final int nbNodes = cuts.length / 3 + leafs.length;
            cutIndex  = 0;
            flagIndex = 0;
            for (nodeIndex = 0; nodeIndex < nbNodes; ++nodeIndex) {
                if (leafs[flagIndex] == nodeIndex) {
                    // this is a leaf node
                    node.setAttribute(Boolean.valueOf(flags[flagIndex++]));
                    while (node.getParent() != null) {
                        final BSPTree<Sphere2D> parent = node.getParent();
                        if (node == parent.getMinus()) {
                            node = parent.getPlus();
                            break;
                        } else {
                            node = parent;
                        }
                    }
                } else {
                    // this is an internal node
                    final double x = cuts[cutIndex++];
                    final double y = cuts[cutIndex++];
                    final double z = cuts[cutIndex++];
                    node.insertCut(new Circle(new Vector3D(x, y, z), tolerance));
                    node = node.getMinus();
                }
            }

            return new GeographicZoneDetector(body, new SphericalPolygonsSet(node, tolerance), margin).
                    withMaxCheck(maxCheck).
                    withThreshold(threshold).
                    withMaxIter(maxIter);

        }

    }

}