GammaMnsFunction.java
/* Copyright 2002-2015 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.propagation.semianalytical.dsst.utilities;
import java.util.Map;
import java.util.TreeMap;
import org.apache.commons.math3.util.FastMath;
import org.orekit.propagation.semianalytical.dsst.utilities.CoefficientsFactory.MNSKey;
/** Compute the Γ<sup>m</sup><sub>n,s</sub>(γ) function from equation 2.7.1-(13).
*
* @author Romain Di Costanzo
*/
public class GammaMnsFunction {
/** Storage map. */
private final Map<MNSKey, Double> map;
/** Factorial. */
private final double[] fact;
/** 1 + I * γ. */
private final double opIg;
/** I = +1 for a prograde orbit, -1 otherwise. */
private final int I;
/** Simple constructor.
* @param fact factorial array
* @param gamma γ
* @param I retrograde factor
*/
public GammaMnsFunction(final double[] fact, final double gamma, final int I) {
this.fact = fact.clone();
this.opIg = 1. + I * gamma;
this.I = I;
this.map = new TreeMap<MNSKey, Double>();
}
/** Get Γ function value.
* @param m m
* @param n n
* @param s s
* @return Γ<sup>m</sup><sub>n, s</sub>(γ)
*/
public double getValue(final int m, final int n, final int s) {
double res = 0.;
final MNSKey key = new MNSKey(m, n, s);
if (map.containsKey(key)) {
res = map.get(key);
} else {
if (s <= -m) {
res = FastMath.pow(-1, m - s) * FastMath.pow(2, s) * FastMath.pow(opIg, -I * m);
} else if (s >= m) {
res = FastMath.pow(2, -s) * FastMath.pow(opIg, I * m);
} else {
res = FastMath.pow(-1, m - s) * FastMath.pow(2, -m) * FastMath.pow(opIg, I * s);
res *= fact[n + m] * fact[n - m];
res /= fact[n + s] * fact[n - s];
}
map.put(key, res);
}
return res;
}
/** Get Γ function derivative.
* @param m m
* @param n n
* @param s s
* @return dΓ<sup>m</sup><sub>n,s</sub>(γ)/dγ
*/
public double getDerivative(final int m, final int n, final int s) {
double res = 0.;
if (s <= -m) {
res = -m * I * getValue(m, n, s) / opIg;
} else if (s >= m) {
res = m * I * getValue(m, n, s) / opIg;
} else {
res = s * I * getValue(m, n, s) / opIg;
}
return res;
}
}