Tile.java
/* Copyright 2002-2016 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.models.earth.tessellation;
import java.io.Serializable;
import org.apache.commons.math3.geometry.euclidean.threed.Vector3D;
import org.apache.commons.math3.util.FastMath;
import org.orekit.bodies.GeodeticPoint;
/** Simple data structure for a quadrilateral tile shape on a body surface.
* <p>
* This class is devoted to simple usage only. It assumes the edges
* are strictly between 0 and π radians and that the angles between
* edges are also strictly between 0 and π radians.
* </p>
* @see AlongTrackAiming
* @see ConstantAzimuthAiming
* @author Luc Maisonobe
*/
public class Tile implements Serializable {
/** Serializable UID. */
private static final long serialVersionUID = 20150313L;
/** First vertex. */
private final GeodeticPoint v0;
/** Second vertex. */
private final GeodeticPoint v1;
/** Third vertex. */
private final GeodeticPoint v2;
/** Fourth vertex. */
private final GeodeticPoint v3;
/** Create a tile.
* <p>
* It is caller responsibility o ensure the vertices define a
* simple non-degenerated tile (i.e. edges are strictly between
* 0 than π radians and angles between edges are also strictly
* between 0 and π radians). No checks are performed here.
* </p>
* @param v0 first vertex
* @param v1 second vertex
* @param v2 third vertex
* @param v3 fourth vertex
*/
public Tile(final GeodeticPoint v0, final GeodeticPoint v1,
final GeodeticPoint v2, final GeodeticPoint v3) {
this.v0 = v0;
this.v1 = v1;
this.v2 = v2;
this.v3 = v3;
}
/** Get the four vertices.
* @return four vertices
*/
public GeodeticPoint[] getVertices() {
return new GeodeticPoint[] {
v0, v1, v2, v3
};
}
/** Get an interpolated point inside the tile.
* <p>
* The interpolated point is based on bilinear interpolations
* along the body surface assumed to be <em>spherical</em>,
* and along the vertical axis.
* </p>
* <p>
* The interpolation parameters are chosen such that
* (u = 0, v = 0) maps to vertex v0, (u = 1, v = 0) maps
* to vertex v1, (u = 1, v = 1) maps to vertex v2 and
* (u = 0, v = 1) maps to vertex v3.
* </p>
* @param u first interpolation parameter (should be between
* 0 and 1 to remain inside the tile)
* @param v second interpolation parameter (should be between
* 0 and 1 to remain inside the tile)
* @return interpolated point
*/
public GeodeticPoint getInterpolatedPoint(final double u, final double v) {
// bilinear interpolation along a spherical shape
final Vector3D pu0 = interpolate(v0.getZenith(), v1.getZenith(), u);
final Vector3D pu1 = interpolate(v3.getZenith(), v2.getZenith(), u);
final Vector3D puv = interpolate(pu0, pu1, v);
// bilinear interpolation of altitude
final double hu0 = v1.getAltitude() * u + v0.getAltitude() * (1 - u);
final double hu1 = v2.getAltitude() * u + v3.getAltitude() * (1 - u);
final double huv = hu1 * v + hu0 * (1 - v);
// create interpolated point
return new GeodeticPoint(puv.getDelta(), puv.getAlpha(), huv);
}
/** Interpolate a vector along a unit sphere.
* @param p0 first base unit vector
* @param p1 second base unit vector
* @param r interpolation parameter (0 for p0, 1 for p1)
* @return interpolated unit vector
*/
private Vector3D interpolate(final Vector3D p0, final Vector3D p1, final double r) {
// find all interpolation angles
final double theta = Vector3D.angle(p0, p1);
final double alpha = r * theta;
final double thetaMAlpha = (1 - r) * theta;
final double sinTheta = FastMath.sin(theta);
final double sinAlpha = FastMath.sin(alpha);
final double sinThetaMAlpha = FastMath.sin(thetaMAlpha);
// interpolate
return new Vector3D(sinThetaMAlpha / sinTheta, p0, sinAlpha / sinTheta, p1);
}
/** Get the center point.
* <p>
* The center points corresponds to {@link
* #getInterpolatedPoint(double, double) getInterpolatedPoint(0.5, 0.5)}
* </p>
* @return center point
*/
public GeodeticPoint getCenter() {
return getInterpolatedPoint(0.5, 0.5);
}
}