KlobucharIonoModel.java
/* Copyright 2002-2016 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.models.earth;
import org.hipparchus.util.FastMath;
import org.orekit.bodies.GeodeticPoint;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.DateTimeComponents;
import org.orekit.time.TimeScalesFactory;
import org.orekit.utils.Constants;
/**
* Klobuchar ionospheric delay model.
* Klobuchar ionospheric delay model is designed as a GNSS correction model.
* The parameters for the model are provided by the GPS satellites in their broadcast
* messsage.
* This model is based on the assumption the electron content is concentrated
* in 350 km layer.
*
* The delay refers to L1 (1575.42 MHz).
* If the delay is sought for L2 (1227.60 MHz), multiply the result by 1.65 (Klobuchar, 1996).
* More generally, since ionospheric delay is inversely proportional to the square of the signal
* frequency f, to adapt this model to other GNSS frequencies f, multiply by (L1 / f)^2.
*
* References:
* ICD-GPS-200, Rev. C, (1997), pp. 125-128
* Klobuchar, J.A., Ionospheric time-delay algorithm for single-frequency GPS users,
* IEEE Transactions on Aerospace and Electronic Systems, Vol. 23, No. 3, May 1987
* Klobuchar, J.A., "Ionospheric Effects on GPS", Global Positioning System: Theory and
* Applications, 1996, pp.513-514, Parkinson, Spilker.
*
* @author Joris Olympio
* @since 7.1
*
*/
public class KlobucharIonoModel implements IonosphericModel {
/** Serializable UID. */
private static final long serialVersionUID = 7277525837842061107L;
/** The 4 coefficients of a cubic equation representing the amplitude of the vertical delay. Units are sec/semi-circle^(i-1) for the i-th coefficient, i=1,2,3,4. */
private final double[] alpha;
/** The 4 coefficients of a cubic equation representing the period of the model. Units are sec/semi-circle^(i-1) for the i-th coefficient, i=1,2,3,4. */
private final double[] beta;
/** ratio of signal frequency with L1 frequency. */
private final double ratio;
/** Create a new Klobuchar ionospheric delay model, when single L1 frequency system is used.
* This model accounts for at least 50 percent of RMS error due to ionospheric propagation effect (ICD-GPS-200)
*
* @param alpha coefficients of a cubic equation representing the amplitude of the vertical delay.
* @param beta coefficients of a cubic equation representing the period of the model.
*/
public KlobucharIonoModel(final double[] alpha, final double[] beta) {
this.alpha = alpha.clone();
this.beta = beta.clone();
this.ratio = 1.;
}
/** Create a new Klobuchar ionospheric delay model, when a single frequency system is used.
* This model accounts for at least 50 percent of RMS error due to ionospheric propagation effect (ICD-GPS-200)
*
* @param alpha coefficients of a cubic equation representing the amplitude of the vertical delay.
* @param beta coefficients of a cubic equation representing the period of the model.
* @param frequency frequency of the radiowave signal in MHz
*/
public KlobucharIonoModel(final double[] alpha, final double[] beta, final double frequency) {
this.alpha = alpha.clone();
this.beta = beta.clone();
this.ratio = FastMath.pow(1575.42 / frequency, 2);
}
/** {@inheritDoc} */
@Override
public double pathDelay(final AbsoluteDate date, final GeodeticPoint geo,
final double elevation, final double azimuth) {
// degees to semisircles
final double rad2semi = 1. / FastMath.PI;
final double semi2rad = FastMath.PI;
// Earth Centered angle
final double psi = 0.0137 / (elevation / FastMath.PI + 0.11) - 0.022;
// Subionospheric latitude: the latitude of the IPP (Ionospheric Pierce Point)
// in [-0.416, 0.416], semicircle
final double latIono = FastMath.min(
FastMath.max(geo.getLatitude() * rad2semi + psi * FastMath.cos(azimuth), -0.416),
0.416);
// Subionospheric longitude: the longitude of the IPP
// in semicircle
final double lonIono = geo.getLongitude() * rad2semi + (psi * FastMath.sin(azimuth) / FastMath.cos(latIono * semi2rad));
// Geomagnetic latitude, semicircle
final double latGeom = latIono + 0.064 * FastMath.cos((lonIono - 1.617) * semi2rad);
// day of week and tow (sec)
// Note: Sunday=0, Monday=1, Tuesday=2, Wednesday=3, Thursday=4, Friday=5, Saturday=6
final DateTimeComponents dtc = date.getComponents(TimeScalesFactory.getGPS());
final int dofweek = dtc.getDate().getDayOfWeek();
final double secday = dtc.getTime().getSecondsInLocalDay();
final double tow = dofweek * 86400. + secday;
final double t = 43200. * lonIono + tow;
final double tsec = t - FastMath.floor(t / 86400.) * 86400; // Seconds of day
// Slant factor, semicircle
final double slantFactor = 1.0 + 16.0 * FastMath.pow(0.53 - elevation / FastMath.PI, 3);
// Period of model, seconds
final double period = FastMath.max(72000., beta[0] + (beta[1] + (beta[2] + beta[3] * latGeom) * latGeom) * latGeom);
// Phase of the model, radians
// (Max at 14.00 = 50400 sec local time)
final double x = 2.0 * FastMath.PI * (tsec - 50400.0) / period;
// Amplitude of the model, seconds
final double amplitude = FastMath.max(0, alpha[0] + (alpha[1] + (alpha[2] + alpha[3] * latGeom) * latGeom) * latGeom);
// Ionospheric correction (L1)
double ionoTimeDelayL1 = slantFactor * (5. * 1e-9);
if (FastMath.abs(x) < 1.570) {
ionoTimeDelayL1 += slantFactor * (amplitude * (1.0 - FastMath.pow(x, 2) / 2.0 + FastMath.pow(x, 4) / 24.0));
}
// Ionospheric delay for the L1 frequency, in meters, with slant correction.
return ratio * Constants.SPEED_OF_LIGHT * ionoTimeDelayL1;
}
}