GPSPropagator.java
/* Copyright 2002-2016 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.propagation.analytical.gnss;
import org.hipparchus.analysis.differentiation.DerivativeStructure;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathUtils;
import org.orekit.attitudes.AttitudeProvider;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitMessages;
import org.orekit.frames.Frame;
import org.orekit.frames.FramesFactory;
import org.orekit.orbits.CartesianOrbit;
import org.orekit.orbits.Orbit;
import org.orekit.propagation.SpacecraftState;
import org.orekit.propagation.analytical.AbstractAnalyticalPropagator;
import org.orekit.time.AbsoluteDate;
import org.orekit.utils.IERSConventions;
import org.orekit.utils.PVCoordinates;
/**
* This class aims at propagating a GPS orbit from {@link GPSOrbitalElements}.
*
* @see <a href="http://www.gps.gov/technical/icwg/IS-GPS-200H.pdf">GPS Interface Specification</a>
* @author Pascal Parraud
* @since 8.0
*/
public class GPSPropagator extends AbstractAnalyticalPropagator {
// Constants
/** WGS 84 value of the earth's rotation rate in rad/s. */
private static final double GPS_AV = 7.2921151467e-5;
/** Duration of the GPS cycle in seconds. */
private static final double GPS_CYCLE_DURATION = GPSOrbitalElements.GPS_WEEK_IN_SECONDS *
GPSOrbitalElements.GPS_WEEK_NB;
// Data used to solve Kepler's equation
/** First coefficient to compute Kepler equation solver starter. */
private static final double A;
/** Second coefficient to compute Kepler equation solver starter. */
private static final double B;
static {
final double k1 = 3 * FastMath.PI + 2;
final double k2 = FastMath.PI - 1;
final double k3 = 6 * FastMath.PI - 1;
A = 3 * k2 * k2 / k1;
B = k3 * k3 / (6 * k1);
}
// Fields
/** The GPS orbital elements used. */
private final GPSOrbitalElements gpsOrbit;
/** The spacecraft mass (kg). */
private final double mass;
/** The ECI frame used for GPS propagation. */
private final Frame eci;
/** The ECEF frame used for GPS propagation. */
private final Frame ecef;
/**
* This nested class aims at building a GPSPropagator.
* <p>It implements the classical builder pattern.</p>
*
*/
public static class Builder {
// Required parameter
/** The GPS orbital elements. */
private final GPSOrbitalElements orbit;
// Optional parameters
/** The attitude provider. */
private AttitudeProvider attitudeProvider = DEFAULT_LAW;
/** The mass. */
private double mass = DEFAULT_MASS;
/** The ECI frame. */
private Frame eci = null;
/** The ECEF frame. */
private Frame ecef = null;
/** Initializes the builder.
* <p>The GPS orbital elements is the only requested parameter to build a GPSPropagator.</p>
* <p>The attitude provider is set by default to the
* {@link org.orekit.propagation.Propagator#DEFAULT_LAW DEFAULT_LAW}.<br>
* The mass is set by default to the
* {@link org.orekit.propagation.Propagator#DEFAULT_MASS DEFAULT_MASS}.<br>
* The ECI frame is set by default to the
* {@link org.orekit.frames.Predefined#EME2000 EME2000 frame}.<br>
* The ECEF frame is set by default to the
* {@link org.orekit.frames.Predefined#ITRF_CIO_CONV_2010_SIMPLE_EOP CIO/2010-based ITRF simple EOP}.
* </p>
*
* @param gpsOrbElt the GPS orbital elements to be used by the GPSpropagator.
* @throws OrekitException if data embedded in the library cannot be read
* @see #attitudeProvider(AttitudeProvider provider)
* @see #mass(double mass)
* @see #eci(Frame inertial)
* @see #ecef(Frame bodyFixed)
*/
public Builder(final GPSOrbitalElements gpsOrbElt) throws OrekitException {
this.orbit = gpsOrbElt;
this.eci = FramesFactory.getEME2000();
this.ecef = FramesFactory.getITRF(IERSConventions.IERS_2010, true);
}
/** Sets the attitude provider.
*
* @param userProvider the attitude provider
* @return the updated builder
*/
public Builder attitudeProvider(final AttitudeProvider userProvider) {
this.attitudeProvider = userProvider;
return this;
}
/** Sets the mass.
*
* @param userMass the mass (in kg)
* @return the updated builder
*/
public Builder mass(final double userMass) {
this.mass = userMass;
return this;
}
/** Sets the Earth Centered Inertial frame used for propagation.
*
* @param inertial the ECI frame
* @return the updated builder
*/
public Builder eci(final Frame inertial) {
this.eci = inertial;
return this;
}
/** Sets the Earth Centered Earth Fixed frame assimilated to the WGS84 ECEF.
*
* @param bodyFixed the ECEF frame
* @return the updated builder
*/
public Builder ecef(final Frame bodyFixed) {
this.ecef = bodyFixed;
return this;
}
/** Finalizes the build.
*
* @return the built GPSPropagator
*/
public GPSPropagator build() {
return new GPSPropagator(this);
}
}
/**
* Private constructor.
*
* @param builder the builder
*/
private GPSPropagator(final Builder builder) {
super(builder.attitudeProvider);
// Stores the GPS orbital elements
this.gpsOrbit = builder.orbit;
// Sets the start date as the date of the orbital elements
setStartDate(gpsOrbit.getDate());
// Sets the mass
this.mass = builder.mass;
// Sets the Earth Centered Inertial frame
this.eci = builder.eci;
// Sets the Earth Centered Earth Fixed frame
this.ecef = builder.ecef;
}
/**
* Gets the PVCoordinates of the GPS SV in {@link #getECEF() ECEF frame}.
*
* <p>The algorithm is defined at Table 20-IV from IS-GPS-200 document,
* with automatic differentiation added to compute velocity and
* acceleration.</p>
*
* @param date the computation date
* @return the GPS SV PVCoordinates in {@link #getECEF() ECEF frame}
*/
public PVCoordinates propagateInEcef(final AbsoluteDate date) {
// Duration from GPS ephemeris Reference date
final DerivativeStructure tk = new DerivativeStructure(1, 2, 0, getTk(date));
// Mean anomaly
final DerivativeStructure mk = tk.multiply(gpsOrbit.getMeanMotion()).add(gpsOrbit.getM0());
// Eccentric Anomaly
final DerivativeStructure ek = getEccentricAnomaly(mk);
// True Anomaly
final DerivativeStructure vk = getTrueAnomaly(ek);
// Argument of Latitude
final DerivativeStructure phik = vk.add(gpsOrbit.getPa());
final DerivativeStructure twoPhik = phik.multiply(2);
final DerivativeStructure c2phi = twoPhik.cos();
final DerivativeStructure s2phi = twoPhik.sin();
// Argument of Latitude Correction
final DerivativeStructure dphik = c2phi.multiply(gpsOrbit.getCuc()).add(s2phi.multiply(gpsOrbit.getCus()));
// Radius Correction
final DerivativeStructure drk = c2phi.multiply(gpsOrbit.getCrc()).add(s2phi.multiply(gpsOrbit.getCrs()));
// Inclination Correction
final DerivativeStructure dik = c2phi.multiply(gpsOrbit.getCic()).add(s2phi.multiply(gpsOrbit.getCis()));
// Corrected Argument of Latitude
final DerivativeStructure uk = phik.add(dphik);
// Corrected Radius
final DerivativeStructure rk = ek.cos().multiply(-gpsOrbit.getE()).add(1).multiply(gpsOrbit.getSma()).add(drk);
// Corrected Inclination
final DerivativeStructure ik = tk.multiply(gpsOrbit.getIDot()).add(gpsOrbit.getI0()).add(dik);
final DerivativeStructure cik = ik.cos();
// Positions in orbital plane
final DerivativeStructure xk = uk.cos().multiply(rk);
final DerivativeStructure yk = uk.sin().multiply(rk);
// Corrected longitude of ascending node
final DerivativeStructure omk = tk.multiply(gpsOrbit.getOmegaDot() - GPS_AV).
add(gpsOrbit.getOmega0() - GPS_AV * gpsOrbit.getTime());
final DerivativeStructure comk = omk.cos();
final DerivativeStructure somk = omk.sin();
// returns the Earth-fixed coordinates
final FieldVector3D<DerivativeStructure> positionwithDerivatives =
new FieldVector3D<DerivativeStructure>(xk.multiply(comk).subtract(yk.multiply(somk).multiply(cik)),
xk.multiply(somk).add(yk.multiply(comk).multiply(cik)),
yk.multiply(ik.sin()));
return new PVCoordinates(positionwithDerivatives);
}
/**
* Get the duration from GPS Reference epoch.
* <p>This takes the GPS week roll-over into account.</p>
*
* @param date the considered date
* @return the duration from GPS orbit Reference epoch (s)
*/
private double getTk(final AbsoluteDate date) {
// Time from ephemeris reference epoch
double tk = date.durationFrom(gpsOrbit.getDate());
// Adjusts the time to take roll over week into account
while (tk > 0.5 * GPS_CYCLE_DURATION) {
tk -= GPS_CYCLE_DURATION;
}
while (tk < -0.5 * GPS_CYCLE_DURATION) {
tk += GPS_CYCLE_DURATION;
}
// Returns the time from ephemeris reference epoch
return tk;
}
/**
* Gets eccentric anomaly from mean anomaly.
* <p>The algorithm used to solve the Kepler equation has been published in:
* "Procedures for solving Kepler's Equation", A. W. Odell and R. H. Gooding,
* Celestial Mechanics 38 (1986) 307-334</p>
* <p>It has been copied from the OREKIT library (KeplerianOrbit class).</p>
*
* @param mk the mean anomaly (rad)
* @return the eccentric anomaly (rad)
*/
private DerivativeStructure getEccentricAnomaly(final DerivativeStructure mk) {
// reduce M to [-PI PI] interval
final double[] mlDerivatives = mk.getAllDerivatives();
mlDerivatives[0] = MathUtils.normalizeAngle(mlDerivatives[0], 0.0);
final DerivativeStructure reducedM = new DerivativeStructure(mk.getFreeParameters(),
mk.getOrder(),
mlDerivatives);
// compute start value according to A. W. Odell and R. H. Gooding S12 starter
DerivativeStructure ek;
if (FastMath.abs(reducedM.getValue()) < 1.0 / 6.0) {
ek = reducedM.add(reducedM.multiply(6).cbrt().subtract(reducedM).multiply(gpsOrbit.getE()));
} else {
if (reducedM.getValue() < 0) {
final DerivativeStructure w = reducedM.add(FastMath.PI);
ek = reducedM.add(w.multiply(-A).divide(w.subtract(B)).subtract(FastMath.PI).subtract(reducedM).multiply(gpsOrbit.getE()));
} else {
final DerivativeStructure minusW = reducedM.subtract(FastMath.PI);
ek = reducedM.add(minusW.multiply(A).divide(minusW.add(B)).add(FastMath.PI).subtract(reducedM).multiply(gpsOrbit.getE()));
}
}
final double e1 = 1 - gpsOrbit.getE();
final boolean noCancellationRisk = (e1 + ek.getValue() * ek.getValue() / 6) >= 0.1;
// perform two iterations, each consisting of one Halley step and one Newton-Raphson step
for (int j = 0; j < 2; ++j) {
final DerivativeStructure f;
DerivativeStructure fd;
final DerivativeStructure fdd = ek.sin().multiply(gpsOrbit.getE());
final DerivativeStructure fddd = ek.cos().multiply(gpsOrbit.getE());
if (noCancellationRisk) {
f = ek.subtract(fdd).subtract(reducedM);
fd = fddd.subtract(1).negate();
} else {
f = eMeSinE(ek).subtract(reducedM);
final DerivativeStructure s = ek.multiply(0.5).sin();
fd = s.multiply(s).multiply(2 * gpsOrbit.getE()).add(e1);
}
final DerivativeStructure dee = f.multiply(fd).divide(f.multiply(0.5).multiply(fdd).subtract(fd.multiply(fd)));
// update eccentric anomaly, using expressions that limit underflow problems
final DerivativeStructure w = fd.add(dee.multiply(0.5).multiply(fdd.add(dee.multiply(fdd).divide(3))));
fd = fd.add(dee.multiply(fdd.add(dee.multiply(0.5).multiply(fdd))));
ek = ek.subtract(f.subtract(dee.multiply(fd.subtract(w))).divide(fd));
}
// expand the result back to original range
ek = ek.add(mk.getValue() - reducedM.getValue());
// Returns the eccentric anomaly
return ek;
}
/**
* Accurate computation of E - e sin(E).
*
* @param E eccentric anomaly
* @return E - e sin(E)
*/
private DerivativeStructure eMeSinE(final DerivativeStructure E) {
DerivativeStructure x = E.sin().multiply(1 - gpsOrbit.getE());
final DerivativeStructure mE2 = E.negate().multiply(E);
DerivativeStructure term = E;
DerivativeStructure d = E.getField().getZero();
// the inequality test below IS intentional and should NOT be replaced by a check with a small tolerance
for (DerivativeStructure x0 = d.add(Double.NaN); x.getValue() != x0.getValue();) {
d = d.add(2);
term = term.multiply(mE2.divide(d.multiply(d.add(1))));
x0 = x;
x = x.subtract(term);
}
return x;
}
/** Gets true anomaly from eccentric anomaly.
*
* @param ek the eccentric anomaly (rad)
* @return the true anomaly (rad)
*/
private DerivativeStructure getTrueAnomaly(final DerivativeStructure ek) {
final DerivativeStructure svk = ek.sin().multiply(FastMath.sqrt(1. - gpsOrbit.getE() * gpsOrbit.getE()));
final DerivativeStructure cvk = ek.cos().subtract(gpsOrbit.getE());
return svk.atan2(cvk);
}
/**
* Get the Earth gravity coefficient used for GPS propagation.
* @return the Earth gravity coefficient.
*/
public static double getMU() {
return GPSOrbitalElements.GPS_MU;
}
/**
* Gets the underlying GPS orbital elements.
*
* @return the underlying GPS orbital elements
*/
public GPSOrbitalElements getGPSOrbitalElements() {
return gpsOrbit;
}
/**
* Gets the Earth Centered Inertial frame used to propagate the orbit.
*
* @return the ECI frame
*/
public Frame getECI() {
return eci;
}
/**
* Gets the Earth Centered Earth Fixed frame used to propagate GPS orbits according to the
* <a href="http://www.gps.gov/technical/icwg/IS-GPS-200H.pdf">GPS Interface Specification</a>.
* <p>This frame is assimilated to the WGS84 ECEF.</p>
*
* @return the ECEF frame
*/
public Frame getECEF() {
return ecef;
}
/** {@inheritDoc} */
public Frame getFrame() {
return eci;
}
/** {@inheritDoc} */
public void resetInitialState(final SpacecraftState state) throws OrekitException {
throw new OrekitException(OrekitMessages.NON_RESETABLE_STATE);
}
/** {@inheritDoc} */
protected void resetIntermediateState(final SpacecraftState state, final boolean forward)
throws OrekitException {
throw new OrekitException(OrekitMessages.NON_RESETABLE_STATE);
}
/** {@inheritDoc} */
protected double getMass(final AbsoluteDate date) {
return mass;
}
/** {@inheritDoc} */
protected Orbit propagateOrbit(final AbsoluteDate date) throws OrekitException {
// Gets the PVCoordinates in ECEF frame
final PVCoordinates pvaInECEF = propagateInEcef(date);
// Transforms the PVCoordinates to ECI frame
final PVCoordinates pvaInECI = ecef.getTransformTo(eci, date).transformPVCoordinates(pvaInECEF);
// Returns the Cartesian orbit
return new CartesianOrbit(pvaInECI, eci, date, GPSOrbitalElements.GPS_MU);
}
}