IodLambert.java
/* Copyright 2002-2019 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.estimation.iod;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.util.FastMath;
import org.orekit.frames.Frame;
import org.orekit.orbits.KeplerianOrbit;
import org.orekit.time.AbsoluteDate;
import org.orekit.utils.PVCoordinates;
/**
* Lambert initial orbit determination, assuming Keplerian motion.
* An orbit is determined from two position vectors.
*
* References:
* Battin, R.H., An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education, 1999.
* Lancaster, E.R. and Blanchard, R.C., A Unified Form of Lambert’s Theorem, Goddard Space Flight Center, 1968.
*
* @author Joris Olympio
* @since 8.0
*/
public class IodLambert {
/** gravitational constant. */
private final double mu;
/** Creator.
*
* @param mu gravitational constant
*/
public IodLambert(final double mu) {
this.mu = mu;
}
/** Estimate a Keplerian orbit given two position vectors and a duration.
* <p>
* The logic for setting {@code posigrade} and {@code nRev} is that the
* sweep angle Δυ travelled by the object between {@code t1} and {@code t2} is
* 2π {@code nRev} - α if {@code posigrade} is false and 2π {@code nRev} + α
* if {@code posigrade} is true, where α is the separation angle between
* {@code p1} and {@code p2}, which is always computed between 0 and π
* (because in 3D without a normal reference, vector angles cannot go past π).
* </p>
* <p>
* This implies that {@code posigrade} should be set to true if {@code p2} is
* located in the half orbit starting at {@code p1} and it should be set to
* false if {@code p2} is located in the half orbit ending at {@code p1},
* regardless of the number of periods between {@code t1} and {@code t2},
* and {@code nRev} should be set accordingly.
* </p>
* <p>
* As an example, if {@code t2} is less than half a period after {@code t1},
* then {@code posigrade} should be {@code true} and {@code nRev} should be 0.
* If {@code t2} is more than half a period after {@code t1} but less than
* one period after {@code t1}, {@code posigrade} should be {@code false} and
* {@code nRev} should be 1.
* </p>
* @param frame frame
* @param posigrade flag indicating the direction of motion
* @param nRev number of revolutions
* @param p1 position vector 1
* @param t1 date of observation 1
* @param p2 position vector 2
* @param t2 date of observation 2
* @return an initial Keplerian orbit estimate
*/
public KeplerianOrbit estimate(final Frame frame, final boolean posigrade,
final int nRev,
final Vector3D p1, final AbsoluteDate t1,
final Vector3D p2, final AbsoluteDate t2) {
final double r1 = p1.getNorm();
final double r2 = p2.getNorm();
final double tau = t2.durationFrom(t1); // in seconds
// normalizing constants
final double R = FastMath.max(r1, r2); // in m
final double V = FastMath.sqrt(mu / R); // in m/s
final double T = R / V; // in seconds
// sweep angle
double dth = Vector3D.angle(p1, p2);
// compute the number of revolutions
if (!posigrade) {
dth = 2 * FastMath.PI - dth;
}
dth = dth + nRev * 2 * FastMath.PI;
// velocity vectors in the orbital plane, in the R-T frame
final double[] Vdep = new double[2];
// call Lambert's problem solver
final boolean exitflag = solveLambertPb(r1 / R, r2 / R, dth, tau / T, nRev, Vdep);
if (exitflag) {
// basis vectors
// normal to the orbital arc plane
final Vector3D Pn = p1.crossProduct(p2);
// perpendicular to the radius vector, in the orbital arc plane
final Vector3D Pt = Pn.crossProduct(p1);
// tangential velocity norm
double RT = Pt.getNorm();
if (!posigrade) {
RT = -RT;
}
// velocity vector at P1
final Vector3D Vel1 = new Vector3D(V * Vdep[0] / r1, p1,
V * Vdep[1] / RT, Pt);
// compute the equivalent Keplerian orbit
return new KeplerianOrbit(new PVCoordinates(p1, Vel1), frame, t1, mu);
}
return null;
}
/** Lambert's solver.
* Assume mu=1.
*
* @param r1 radius 1
* @param r2 radius 2
* @param dth sweep angle
* @param tau time of flight
* @param mRev number of revs
* @param V1 velocity at departure in (T, N) basis
* @return something
*/
boolean solveLambertPb(final double r1, final double r2, final double dth, final double tau,
final int mRev, final double[] V1) {
// decide whether to use the left or right branch (for multi-revolution
// problems), and the long- or short way.
final boolean leftbranch = FastMath.signum(mRev) > 0;
int longway = 0;
if (tau > 0) {
longway = 1;
}
final int m = FastMath.abs(mRev);
final double rtof = FastMath.abs(tau);
double theta = dth;
if (longway < 0) {
theta = 2 * FastMath.PI - dth;
}
// non-dimensional chord ||r2-r1||
final double chord = FastMath.sqrt(r1 * r1 + r2 * r2 - 2 * r1 * r2 * FastMath.cos(theta));
// non-dimensional semi-perimeter of the triangle
final double speri = 0.5 * (r1 + r2 + chord);
// minimum energy ellipse semi-major axis
final double minSma = speri / 2.;
// lambda parameter (Eq 7.6)
final double lambda = FastMath.sqrt(1 - chord / speri);
// reference tof value for the Newton solver
final double logt = FastMath.log(rtof);
// initialisation of the iterative root finding process (secant method)
// initial values
// -1 < x < 1 => Elliptical orbits
// x = 1 Parabolic orbit
// x > 1 Hyperbolic orbits
final double in1;
final double in2;
double x1;
double x2;
if (m == 0) {
// one revolution, one solution. Define the left and right asymptotes.
in1 = -0.6523333;
in2 = 0.6523333;
x1 = FastMath.log(1 + in1);
x2 = FastMath.log(1 + in2);
} else {
// select initial values, depending on the branch
if (!leftbranch) {
in1 = -0.523334;
in2 = -0.223334;
} else {
in1 = 0.723334;
in2 = 0.523334;
}
x1 = FastMath.tan(in1 * 0.5 * FastMath.PI);
x2 = FastMath.tan(in2 * 0.5 * FastMath.PI);
}
// initial estimates for the tof
final double tof1 = timeOfFlight(in1, longway, m, minSma, speri, chord);
final double tof2 = timeOfFlight(in2, longway, m, minSma, speri, chord);
// initial bounds for y
double y1;
double y2;
if (m == 0) {
y1 = FastMath.log(tof1) - logt;
y2 = FastMath.log(tof2) - logt;
} else {
y1 = tof1 - rtof;
y2 = tof2 - rtof;
}
// Solve for x with the secant method
double err = 1e20;
int iterations = 0;
final double tol = 1e-13;
final int maxiter = 50;
double xnew = 0;
while ((err > tol) && (iterations < maxiter)) {
// new x
xnew = (x1 * y2 - y1 * x2) / (y2 - y1);
// evaluate new time of flight
final double x;
if (m == 0) {
x = FastMath.exp(xnew) - 1;
} else {
x = FastMath.atan(xnew) * 2 / FastMath.PI;
}
final double tof = timeOfFlight(x, longway, m, minSma, speri, chord);
// new value of y
final double ynew;
if (m == 0) {
ynew = FastMath.log(tof) - logt;
} else {
ynew = tof - rtof;
}
// save previous and current values for the next iteration
x1 = x2;
x2 = xnew;
y1 = y2;
y2 = ynew;
// update error
err = FastMath.abs(x1 - xnew);
// increment number of iterations
++iterations;
}
// failure to converge
if (err > tol) {
return false;
}
// convert converged value of x
final double x;
if (m == 0) {
x = FastMath.exp(xnew) - 1;
} else {
x = FastMath.atan(xnew) * 2 / FastMath.PI;
}
// Solution for the semi-major axis (Eq. 7.20)
final double sma = minSma / (1 - x * x);
// compute velocities
final double eta;
if (x < 1) {
// ellipse, Eqs. 7.7, 7.17
final double alfa = 2 * FastMath.acos(x);
final double beta = longway * 2 * FastMath.asin(FastMath.sqrt((speri - chord) / (2. * sma)));
final double psi = (alfa - beta) / 2;
// Eq. 7.21
final double sinPsi = FastMath.sin(psi);
final double etaSq = 2 * sma * sinPsi * sinPsi / speri;
eta = FastMath.sqrt(etaSq);
} else {
// hyperbola
final double gamma = 2 * FastMath.acosh(x);
final double delta = longway * 2 * FastMath.asinh(FastMath.sqrt((chord - speri) / (2 * sma)));
//
final double psi = (gamma - delta) / 2.;
final double sinhPsi = FastMath.sinh(psi);
final double etaSq = -2 * sma * sinhPsi * sinhPsi / speri;
eta = FastMath.sqrt(etaSq);
}
// radial and tangential directions for departure velocity (Eq. 7.36)
final double VR1 = (1. / eta) * FastMath.sqrt(1. / minSma) * (2 * lambda * minSma / r1 - (lambda + x * eta));
final double VT1 = (1. / eta) * FastMath.sqrt(1. / minSma) * FastMath.sqrt(r2 / r1) * FastMath.sin(dth / 2);
V1[0] = VR1;
V1[1] = VT1;
return true;
}
/** Compute the time of flight of a given arc of orbit.
* The time of flight is evaluated via the Lagrange expression.
*
* @param x x
* @param longway solution number; the long way or the short war
* @param mrev number of revolutions of the arc of orbit
* @param minSma minimum possible semi-major axis
* @param speri semi-parameter of the arc of orbit
* @param chord chord of the arc of orbit
* @return the time of flight for the given arc of orbit
*/
private double timeOfFlight(final double x, final int longway, final int mrev, final double minSma,
final double speri, final double chord) {
final double a = minSma / (1 - x * x);
final double tof;
if (FastMath.abs(x) < 1) {
// Lagrange form of the time of flight equation Eq. (7.9)
// elliptical orbit (note: mu = 1)
final double beta = longway * 2 * FastMath.asin(FastMath.sqrt((speri - chord) / (2. * a)));
final double alfa = 2 * FastMath.acos(x);
tof = a * FastMath.sqrt(a) * ((alfa - FastMath.sin(alfa)) - (beta - FastMath.sin(beta)) + 2 * FastMath.PI * mrev);
} else {
// hyperbolic orbit
final double alfa = 2 * FastMath.acosh(x);
final double beta = longway * 2 * FastMath.asinh(FastMath.sqrt((speri - chord) / (-2. * a)));
tof = -a * FastMath.sqrt(-a) * ((FastMath.sinh(alfa) - alfa) - (FastMath.sinh(beta) - beta));
}
return tof;
}
}