OneDVariation.java
/* Copyright 2002-2019 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.gnss.antenna;
import org.hipparchus.util.FastMath;
/**
* Interpolator for 1D phase center variation data.
*
* @author Luc Maisonobe
* @since 9.2
*/
class OneDVariation implements PhaseCenterVariationFunction {
/** Start polar angle. */
private final double polarStart;
/** Step between grid points. */
private final double polarStep;
/** Sampled phase center variations. */
private final double[] variations;
/** Simple constructor.
* @param polarStart start polar angle
* @param polarStep between grid points
* @param variations sampled phase center variations
*/
OneDVariation(final double polarStart, final double polarStep, final double[] variations) {
this.polarStart = polarStart;
this.polarStep = polarStep;
this.variations = variations.clone();
}
/** {@inheritDoc} */
@Override
public double value(final double polarAngle, final double azimuthAngle) {
// find surrounding points
final int jBase = (int) FastMath.floor((polarAngle - polarStart) / polarStep);
final int j = FastMath.max(0, FastMath.min(variations.length - 2, jBase));
final double pInf = polarStart + j * polarStep;
final double pSup = pInf + polarStep;
final double vInf = variations[j];
final double vSup = variations[j + 1];
// linear interpolation
return ((polarAngle - pInf) * vSup + (pSup - polarAngle) * vInf) / polarStep;
}
}