LofOffset.java
/* Copyright 2002-2019 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.attitudes;
import org.hipparchus.RealFieldElement;
import org.hipparchus.geometry.euclidean.threed.FieldRotation;
import org.hipparchus.geometry.euclidean.threed.Rotation;
import org.hipparchus.geometry.euclidean.threed.RotationConvention;
import org.hipparchus.geometry.euclidean.threed.RotationOrder;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitMessages;
import org.orekit.frames.FieldTransform;
import org.orekit.frames.Frame;
import org.orekit.frames.LOFType;
import org.orekit.frames.Transform;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.utils.FieldPVCoordinates;
import org.orekit.utils.FieldPVCoordinatesProvider;
import org.orekit.utils.PVCoordinates;
import org.orekit.utils.PVCoordinatesProvider;
/**
* Attitude law defined by fixed Roll, Pitch and Yaw angles (in any order)
* with respect to a local orbital frame.
* <p>
* The attitude provider is defined as a rotation offset from some local orbital frame.
* @author Véronique Pommier-Maurussane
*/
public class LofOffset implements AttitudeProvider {
/** Serializable UID. */
private static final long serialVersionUID = -713570668596014285L;
/** Type of Local Orbital Frame. */
private LOFType type;
/** Rotation from local orbital frame. */
private final Rotation offset;
/** Inertial frame with respect to which orbit should be computed. */
private final Frame inertialFrame;
/** Create a LOF-aligned attitude.
* <p>
* Calling this constructor is equivalent to call
* {@code LofOffset(inertialFrame, LOFType, RotationOrder.XYZ, 0, 0, 0)}
* </p>
* @param inertialFrame inertial frame with respect to which orbit should be computed
* @param type type of Local Orbital Frame
*/
public LofOffset(final Frame inertialFrame, final LOFType type) {
this(inertialFrame, type, RotationOrder.XYZ, 0, 0, 0);
}
/** Creates new instance.
* <p>
* An important thing to note is that the rotation order and angles signs used here
* are compliant with an <em>attitude</em> definition, i.e. they correspond to
* a frame that rotate in a field of fixed vectors. So to retrieve the angles
* provided here from the Hipparchus underlying rotation, one has to either use the
* {@link RotationConvention#VECTOR_OPERATOR} and <em>revert</em> the rotation, or
* to use {@link RotationConvention#FRAME_TRANSFORM} as in the following code snippet:
* </p>
* <pre>
* LofOffset law = new LofOffset(inertial, lofType, order, alpha1, alpha2, alpha3);
* Rotation offsetAtt = law.getAttitude(orbit).getRotation();
* Rotation alignedAtt = new LofOffset(inertial, lofType).getAttitude(orbit).getRotation();
* Rotation offsetProper = offsetAtt.compose(alignedAtt.revert(), RotationConvention.VECTOR_OPERATOR);
*
* // note the call to revert and the conventions in the following statement
* double[] anglesV = offsetProper.revert().getAngles(order, RotationConvention.VECTOR_OPERATOR);
* System.out.println(alpha1 + " == " + anglesV[0]);
* System.out.println(alpha2 + " == " + anglesV[1]);
* System.out.println(alpha3 + " == " + anglesV[2]);
*
* // note the conventions in the following statement
* double[] anglesF = offsetProper.getAngles(order, RotationConvention.FRAME_TRANSFORM);
* System.out.println(alpha1 + " == " + anglesF[0]);
* System.out.println(alpha2 + " == " + anglesF[1]);
* System.out.println(alpha3 + " == " + anglesF[2]);
* </pre>
* @param inertialFrame inertial frame with respect to which orbit should be computed
* @param type type of Local Orbital Frame
* @param order order of rotations to use for (alpha1, alpha2, alpha3) composition
* @param alpha1 angle of the first elementary rotation
* @param alpha2 angle of the second elementary rotation
* @param alpha3 angle of the third elementary rotation
*/
public LofOffset(final Frame inertialFrame, final LOFType type,
final RotationOrder order, final double alpha1,
final double alpha2, final double alpha3) {
this.type = type;
this.offset = new Rotation(order, RotationConvention.VECTOR_OPERATOR, alpha1, alpha2, alpha3).revert();
if (!inertialFrame.isPseudoInertial()) {
throw new OrekitException(OrekitMessages.NON_PSEUDO_INERTIAL_FRAME,
inertialFrame.getName());
}
this.inertialFrame = inertialFrame;
}
/** {@inheritDoc} */
public Attitude getAttitude(final PVCoordinatesProvider pvProv,
final AbsoluteDate date, final Frame frame) {
// construction of the local orbital frame, using PV from inertial frame
final PVCoordinates pv = pvProv.getPVCoordinates(date, inertialFrame);
final Transform inertialToLof = type.transformFromInertial(date, pv);
// take into account the specified start frame (which may not be an inertial one)
final Transform frameToInertial = frame.getTransformTo(inertialFrame, date);
final Transform frameToLof = new Transform(date, frameToInertial, inertialToLof);
// compose with offset rotation
return new Attitude(date, frame,
offset.compose(frameToLof.getRotation(), RotationConvention.VECTOR_OPERATOR),
offset.applyTo(frameToLof.getRotationRate()),
offset.applyTo(frameToLof.getRotationAcceleration()));
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> FieldAttitude<T> getAttitude(final FieldPVCoordinatesProvider<T> pvProv,
final FieldAbsoluteDate<T> date,
final Frame frame) {
// construction of the local orbital frame, using PV from inertial frame
final FieldPVCoordinates<T> pv = pvProv.getPVCoordinates(date, inertialFrame);
final FieldTransform<T> inertialToLof = type.transformFromInertial(date, pv);
// take into account the specified start frame (which may not be an inertial one)
final FieldTransform<T> frameToInertial = frame.getTransformTo(inertialFrame, date);
final FieldTransform<T> frameToLof = new FieldTransform<>(date, frameToInertial, inertialToLof);
// compose with offset rotation
return new FieldAttitude<>(date, frame,
frameToLof.getRotation().compose(offset, RotationConvention.FRAME_TRANSFORM),
FieldRotation.applyTo(offset, frameToLof.getRotationRate()),
FieldRotation.applyTo(offset, frameToLof.getRotationAcceleration()));
}
}